Non-thermal Plasma Fluidized Bed

Chapter
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)

Abstract

In this chapter, the non-thermal plasma fluidized bed is introduced in detail. The thermal plasma fluidized bed includes gliding arc discharge fluidized bed, dielectric barrier discharge plasma fluidized bed, corona discharge plasma fluidized bed. Moreover, this chapter also introduces the research progress and applications of various reactors, and points out the existing shortcomings of them.

Keyword

Non-thermal plasma fluidized bed 

References

  1. An P. Research on discharge in two-phase mixture of gas and solid with its discharge characteristics in the nonuniform electric fields. Huazhong University of Science and Technology; 2004.Google Scholar
  2. Chen G, Chen S, Feng W, Chen W, Yang SZ. Surface modification of the nanoparticles by an atmospheric room-temperature plasma fluidized bed. Appl Surf Sci. 2008;254(13):3915–20.CrossRefGoogle Scholar
  3. Chen G, Chen S, Zhou M, Feng W, Gu W, Yang S. Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification. J Phys D Appl Phys. 2006;39(24):5211.CrossRefGoogle Scholar
  4. Chen G, Zhou M, Chen S, Lv G, Yao J. Nanolayer biofilm coated on magnetic nanoparticles by using a dielectric barrier discharge glow plasma fluidized bed for immobilizing an antimicrobial peptide. Nanotechnol. 2009;20(46):465706.CrossRefGoogle Scholar
  5. Chen X, Pfender E. Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma. Plasma Chem Plasma P. 1983a;3(1):97–113.CrossRefGoogle Scholar
  6. Chen Z, Dai XJ, Magniez K, Lamb PR, Fox BL, Wang X. Improving the mechanical properties of multiwalled carbon nanotube/epoxy nanocomposites using polymerization in a stirring plasma system. Compos Part A-Appl S. 2014;56(56):172–80.CrossRefGoogle Scholar
  7. Flamant G. Hydrodynamics and heat transfer in a plasma spouted bed reactor. Plasma Chem Plasma P. 1990;10(1):71–85.Google Scholar
  8. Kroker T, Kolb T, Schenk A, Krawczyk K, Młotek M, Gericke KH. Catalytic conversion of simulated biogas mixtures to synthesis gas in a fluidized bed reactor supported by a DBD. Plasma Chem Plasma P. 2012;32(3):565–82.CrossRefGoogle Scholar
  9. Lee H, Sekiguchi H. Plasma–catalytic hybrid system using spouted bed with a gliding arc discharge: CH4 reforming as a model reaction. J Phys D Appl Phys. 2011;44(27):274008.CrossRefGoogle Scholar
  10. Li MW, Gonzalez-Aguilar J, Fulcheri L. Synthesis of titania nanoparticles using a compact nonequilibrium plasma torch. Jpn J Appl Phys. 2008;47(9):7343–5.CrossRefGoogle Scholar
  11. Liu LX, Rudolph V, Litster J. A direct current, plasma fluidized bed reactor: its characteristics and application in diamond synthesis. Powder Technol. 1996;88(1):65–70.CrossRefGoogle Scholar
  12. Manieh AA, Scott DS, Spink DR. Electrothermal fluidized bed chlorination of zircon. Can J Chem Eng. 1974;52(4):507–14.CrossRefGoogle Scholar
  13. Nessim C, Boulos M, Kogelschatz U. In-flight coating of nanoparticles in atmospheric-pressure DBD torch plasmas. EUR Phys J-Appl Phys. 2009;47(2):22819.CrossRefGoogle Scholar
  14. Savintsev MI. Diffusion saturation in electrothermal fluidized bed. Met Sci Heat Treat. 1990;32(11):842–5.CrossRefGoogle Scholar
  15. Schmidt-Szałowski K, Górska A, Motek M. Plasma–catalytic Conversion of Methane by DBD and Gliding Discharges. J Adv Oxid Technol. 2006;9(2):215–9.Google Scholar
  16. Schmidt-Szalowski K, Krawczyck K, Mlotek M. Properties of a heterogeneous system of solid particles in gliding discharge plasma. In: 10th International symposium on high pressure low temperature plasma chemistry (Hakone X, 2006). 2006.Google Scholar
  17. Spillmann A, Sonnenfeld A, Rohr PRV. Flowability modification of lactose powder by plasma enhanced chem vapor deposition. Plasma Process Polym. 2007;4(Supplement S1):S16–S20.Google Scholar
  18. Steinbach PB, Manahan SE, Larsen DW. The chemical reduction of small inorganic gases in an electrothermal plasma reactor. Microchem J. 2003;75(3):223–31.CrossRefGoogle Scholar
  19. Zhu F, Zhang J, Yang Z, Guo Y, Li H, Zhang Y. The dispersion study of TiO2 nanoparticles surface modified through plasma polymerization. Physica E. 2005;27(4):457–61.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Zhejiang University Press 2018

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations