Thermal Plasma Fluidized Bed

  • Changming Du
  • Rongliang Qiu
  • Jujun Ruan
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)


In this chapter, the thermal plasma fluidized bed is introduced in detail. The thermal plasma fluidized bed includes: DC plasma jet spouted bed, AC plasma jet fluidized bed, radio frequency discharge (RF) fluidized bed (RF plasma fluidized bed, RF plasma circulating fluidized bed, RF downer bed), microwave discharge fluidized bed and electrothermal plasma fluidized bed. Moreover, this chapter introduces the research progress and applications of various reactors, and points out the shortcomings of these reactors.


Thermal plasma fluidized bed 


  1. Arpagaus C, Rossi A, Von Rohr PR. Short-time plasma surface modification of HDPE powder in a plasma downer reactor-process, wettability improvement and ageing effects. Appl Surf Sci. 2005a;252(5):1581–95.CrossRefGoogle Scholar
  2. Arpagaus C, Sonnenfeld A, Von Rohr PR. A downer reactor for short-time plasma surface modification of polymer powders. Chem Eng Technol. 2005b;28(1):87–94.CrossRefGoogle Scholar
  3. Attri P, Arora B, Choi EH. Utility of plasma: a new road from physics to chemistry. RSC Adv. 2013;3(31):12540–67.CrossRefGoogle Scholar
  4. Bal S, Musialski A, Swierczek R. Gasification of coal fines in a laboratory plasma-chemical reactor with a spouted bed. [Ar plasma]. Vet Rec. 1971;147(6):166–7.Google Scholar
  5. Bashlai KI, Barantsev IF, Grinbaum MB, Stanyakin VM, Samodurov VV, Todes OM. Thermal and electrical characteristics of a high-frequency electrothermal fluidization bed. J Eng Phys. 1972;22(6):665–9.Google Scholar
  6. Bretagnol F, Tatoulian M, Arefi-Khonsari F, Lorang G, Amouroux J. Surface modification of polyethylene powder by nitrogen and ammonia low pressure plasma in a fluidized bed reactor. React Funct Polymers. 2004;61(2):221–32.CrossRefGoogle Scholar
  7. Chang JS, Ono S, Teil S. Medium pressure glow discharge plasma oxidation by fluifized bed reactors, 1987.Google Scholar
  8. Chen X, Pfender E. Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma. Plasma Chem Plasma P. 1983a;3(1):97–113.CrossRefGoogle Scholar
  9. Chen X, Pfender E. Behavior of small particles in a thermal plasma flow. Plasma Chem Plasma P. 1983b;3(3):351–66.CrossRefGoogle Scholar
  10. Chen X, Chen J, Wang Y. Unsteady heating of metallic particles in a rarefied plasma. Plasma Chem Plasma P. 1995;15(2):199–219.CrossRefGoogle Scholar
  11. Chen G, Chen S, Zhou M, Feng W, Gu W, Yang S. Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification. J Phys D Appl Phys. 2006;39(24):5211.CrossRefGoogle Scholar
  12. Chen G, Chen S, Feng W, Chen W, Yang SZ. Surface modification of the nanoparticles by an atmospheric room-temperature plasma fluidized bed. Appl Surf Sci. 2008;254(13):3915–20.CrossRefGoogle Scholar
  13. Chen G, Zhou M, Chen S, Lv G, Yao J. Nanolayer biofilm coated on magnetic nanoparticles by using a dielectric barrier discharge glow plasma fluidized bed for immobilizing an antimicrobial peptide. Nanotechnology. 2009;20(46):465706.CrossRefGoogle Scholar
  14. Cormier JM, Rusu I. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors. J Phys D Appl Phys. 2001;34(34):2798.CrossRefGoogle Scholar
  15. Du C. A plasma fluidized bed for the production of syngas from MSW. China patent 201410844203.9. 2014a.Google Scholar
  16. Du C. A plasma fluidized bed for the cineration of fly ash. China patent 201410850031.6. 2014b.Google Scholar
  17. El-Naas MH, Munz R, Ajersch F. Modelling of a plasma reactor for the synthesis of calcium carbide. CANMetallQuart. 1998a;37(1):67–74.CrossRefGoogle Scholar
  18. El-Naas MH, Munz R, Ajersch F. Solid-phase synthesis of calcium carbide in a plasma reactor. Plasma Chem Plasma P. 1998b;18(3):409–27.Google Scholar
  19. EL-Naas MH, Munz R, Ajersch F. Production of calcium carbide in a plasmajet fluid bed reactor. Proc ISPC-12. 1995:613–8.Google Scholar
  20. El-Naas MH. Synthesis of calcium carbide in a plasma spout fluid bed. Montreal: McGill University; 1996.Google Scholar
  21. Emome A, Jurewize T. Fuel synthesis for solid oxide fuel cells by plasma spouted bed gasification. In: 14th international symposium on plasma chemistry (Prague, 1999); 1999.Google Scholar
  22. Fauchais P, Vardelle A. Pending problems in thermal plasmas and actual development. Plasma Phys Controlled Fusion. 2000;42(12B):B365.CrossRefGoogle Scholar
  23. Feng H. Analysis of microwave assisted fluidized-bed drying of particulate product with a simplified heat and mass transfer model. International Communications in Heat & Mass Transfer, 2002;29(8):1021–1028.CrossRefGoogle Scholar
  24. Flamant G, Bamrim A. The plasma spouted bed reactor for applications in metallurgy and material synthesis. High Temp Mater Process. 2000a;4(4):455–71.CrossRefGoogle Scholar
  25. Flamant G, Bamrim A. The plasma spouted bed reactor for applications in metallurgy and material synthesis. High Temp Mater Process. 2000b;4(4):18.CrossRefGoogle Scholar
  26. Fridmari HSA, Saveliev A, Nester S, Kerirzedy L. Nonequilibrium gliding arc in fluidized bed. In: 13th international symposium on plasma chemistry (Beijing, 1997). 1997.Google Scholar
  27. Gerdes T, Tap R, Bahke P, Willert-Porada M. CVD–processes in microwave heated fluidized bed reactors. Adv Microwave Radio Freq Process. 2006;54–55(09):720–34.CrossRefGoogle Scholar
  28. Gomez E, Rani DA, Cheeseman CR, Deegan D, Wise M, Boccaccini AR. Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater. 2008;161(4):614–26.Google Scholar
  29. Heberlein J, Murphy AB. Thermal plasma waste treatment. J Phys D Appl Phys. 2008;41(5):053001.CrossRefGoogle Scholar
  30. Hu MB, Dang SC, Ma Q, Xia WD. Stabilizing effect of plasma discharge on bubbling fluidized granular bed. Chin Phys B. 2015;24(7):288–92.Google Scholar
  31. Karches M, Rohr PRV. Microwave plasma characteristics of a circulating fluidized bed-plasma reactor for coating of powders. Surf Coat Tech. 2001;142–144(3):28–33.CrossRefGoogle Scholar
  32. Karches M, Bayer C, Rohr PRV. A circulating fluidised bed for plasma-enhanced Chem vapor deposition on powders at low temperatures. Surf Coat Tech. 1999;116–119(4):879–85.CrossRefGoogle Scholar
  33. Karches M, Takashima AH, Kanno Y. Development of a circulating fluidized-bed reactor for microwave-activated catalysis. Ind Eng Chem Res. 2004;43(26):8200–6.CrossRefGoogle Scholar
  34. Kogelschatz U, Eliasson B, Egli W. Dielectric-barrier discharges. Principle and applications. J Phys IV. 1997;7(C4):44–66.Google Scholar
  35. Kono HO, Soltani-Ahmadi A, Suzuki M. Kinetic forces of solid particles in coarse particles fluidized beds. Powder Technol. 1987;52(1):49–58.CrossRefGoogle Scholar
  36. Kroker T, Kolb T, Schenk A, Krawczyk K, Młotek M, Gericke KH. Catalytic conversion of simulated biogas mixtures to synthesis gas in a fluidized bed reactor supported by a DBD. Plasma Chem Plasma P. 2012;32(3):565–82.CrossRefGoogle Scholar
  37. Kumar A, Dwivedi HK, Nehra V. Atmospheric non-thermal plasma sources. International J. Eng, 2008;2(1):53–68.Google Scholar
  38. Lee H, Sekiguchi H. Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge: CH4 reforming as a model reaction. J Phys D Appl Phys. 2011;44(27):274008.CrossRefGoogle Scholar
  39. Lee YC, Chyou YP, Pfender E. Particle dynamics and particle heat and mass transfer in thermal plasmas. Part II. Particle heat and mass transfer in thermal plasmas. Plasma Chem Plasma P. 1985;5(4):391–414.CrossRefGoogle Scholar
  40. Liu L, Rudolph V, Litster J. A direct current, plasma fluidized bed reactor: its characteristics and application in diamond synthesis. Powder Technol. 1996a;88(1):65–70.CrossRefGoogle Scholar
  41. Liu LX, Rudolph V, Litster JD. A direct current, plasma fluidized bed reactor: its characteristics and application in diamond synthesis. Powder Technol. 1996b;88(1):65–70.CrossRefGoogle Scholar
  42. Matsukata M, Suzuki K, Ueyama K, Kojima T. Development of a microwave plasma-fluidized bed reactor for novel particle processing. Int J Multiph Flow. 1994;20(4):763–73.CrossRefGoogle Scholar
  43. Morstein M, Karches M, Bayer C, Casanova D, Rohr PRV. Plasma CVD of ultrathin TiO2 films on powders in a circulating fluidized bed. Chem Vapor Depos. 2000;6(1):16–20.CrossRefGoogle Scholar
  44. Mutel B, Bigan M, Vezin H. Remote nitrogen plasma treatment of a polyethylene powder: optimisation of the process by composite experimental designs. Appl Surf Sci. 2004;239(1):25–35.Google Scholar
  45. Pacek AW, Nienow A. Fluidisation of fine and very dense hardmetal powders. Powder Technol. 1990;60(2):145–58.CrossRefGoogle Scholar
  46. Pajkic Z, Willert-Porada M. Atmospheric pressure microwave plasma fluidized bed CVD of AIN coatings. Surf Coat Tech. 2009;203(20):3168–72.CrossRefGoogle Scholar
  47. Pajkic Z, Wolf H, Gerdes T, Willert-Porada M. Microwave plasma fluidized bed arc-PVD coating of particulate materials. Surf Coat Tech. 2008;202(16):3927–32.CrossRefGoogle Scholar
  48. Park SH, Sang DK. Functionalization of HDPE powder by CF4 plasma surface treatment in a fluidized bed reactor. Korean J Chem Eng. 1999;16(6):731–6.CrossRefGoogle Scholar
  49. Park SM, Jung SH, Park SH, Kim SD. Silicon oxide thin film deposition on alumina in a circulating fluidized bed reactor. Key Eng Mater. 2005;277:577–82.CrossRefGoogle Scholar
  50. Prat R, Koh YJ, Babukutty Y, Kogoma M, Okazaki S, Kodama M. Polymer deposition using atmospheric pressure plasma glow (APG) discharge. Polymer. 2000;41(20):7355–60.CrossRefGoogle Scholar
  51. Rogers T, Morin TJ. Slip flow in fixed and fluidized bed plasma reactors. Plasma Chem Plasma P. 1991;11(2):203–28.CrossRefGoogle Scholar
  52. Rykalin NN. Plasma engineering in metallurgy and inorganic materials technology. Pure Appl Chem. 1976;48(2):179–94.CrossRefGoogle Scholar
  53. Schmidt-Szałowski K, Górska A, Motek M. Plasma-catalytic conversion of methane by DBD and gliding discharges. J Adv Oxid Technol. 2006;9(2):215–9.Google Scholar
  54. Steinbach BP. An electrothermal fluidized bed carbon particle plasma reactor for hazardous waste treament. University of Missouri-Columbia; 1996.Google Scholar
  55. Steinbach PB, Manahan SE, Larsen DW. The chemical reduction of small inorganic gases in an electrothermal plasma reactor. Microchem J. 2003;75(3):223–31.CrossRefGoogle Scholar
  56. Takarada T, Tamura K, Takezawa H, Nakagawa N, Kato K. The effect of pretreatment in a fluidized bed upon diamond synthesis on particles by chemical vapour deposition. J Mater Sci. 1993;28(6):1545–50.CrossRefGoogle Scholar
  57. Tsukada M, Goto K, Yamamoto RH, Horio M. Metal powder granulation in a plasma-spouted/fluidized bed. Powder Technol. 1995;82(3):347–53.CrossRefGoogle Scholar
  58. Ua-amnueychai W, Kodama S, Tanthapanichakoon W, Sekiguchi H. Preparation of zinc coated PMMA using solid precursor by gliding arc discharge. Chem Eng J. 2015;278:301–8.CrossRefGoogle Scholar
  59. Uglov AA, Gnedovets AG. Effect of particle charging on momentum and heat transfer from rarefied plasma flow. Plasma Chem Plasma P. 1991;11(2):251–67.CrossRefGoogle Scholar
  60. Vaidyanathan A, Mulholland J, Ryu J, Smith MS, Circeo LJ. Characterization of fuel gas products from the treatment of solid waste streams with a plasma arc torch. J Environ Manage. 2007;82(1):77–82.CrossRefGoogle Scholar
  61. Visser J. Van der Waals and other cohesive forces affecting powder fluidization. Powder Technol. 1989;58(1):1–10.CrossRefGoogle Scholar
  62. Waldie B. Review of recent work on the processing of powders in high-temperature plasmas Part II—particle dynamics, heat transfer, and mass transfer. Chem Eng. 1972;261:188–93.Google Scholar
  63. Wu CN, Yan BH, Jin Y, Cheng Y. Modeling and simulation of chemically reacting flows in gas-solid catalytic and non-catalytic processes. Particuology. 2010;8(6):525–30.CrossRefGoogle Scholar
  64. Yang JS, Bao WR, Zhang YF, Xie KC. Engineering application study of producing acetylene through coal pyrolysis in plasma reactor. Chem Eng. 2006;34(6):52–5.Google Scholar
  65. Ye QZ, Li J, Xie ZH. Analytical model of the breakdown mechanism in a two-phase mixture. J Phys D Appl Phys. 2004;37(24):3373.CrossRefGoogle Scholar
  66. Zhu CW, Zhao GY, Hlavacek V. A DC plasma-fluidized bed reactor for the production of calcium carbide. J Mater Sci. 1995;30(9):2412–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Zhejiang University Press 2018

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations