Skip to main content

“I’ve Got the Magic in Me”: The Microbiome of Conventional vs Organic Production Systems

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

The term microbiome refers to the existence of multiple microbial genomes present in an environment in an association with a host. With the development of more precise sequencing approaches, identification of genus and families that were uncultivable microbes has been made possible. The current chapter explores the importance of understanding microbial communities and their association with agricultural production systems with particular attention to endophytic microorganisms. Agri-management practices and their relationship to the selection of microbial variation of taxa by plants and soil have been discussed in detail. The article also discusses how farming practices such as cover cropping and mulching mediate microbial community dynamics. Future perspectives on advancing sustainability by microbiome optimization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58(4):921–929

    Article  CAS  PubMed  Google Scholar 

  • Altmore C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum Rifai. Appl Environ Microbiol 65:2926–2933

    Google Scholar 

  • Bacon CW, White JF (2016) Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants. Symbiosis 68(1):87–98

    Article  CAS  Google Scholar 

  • Barrow JR, Lucero ME, Reyes-Vera I, Havstad KM (2008) Do symbiotic microbes have a role in plant evolution, performance and response to stress? Commun Integr Biol 1:69–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Biedrzycki ML, Jilany TA, Dudley SA, Bais HP (2010) Root exudates mediate kin recognition in plants. Commun Integr Biol 3:28–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Birtel J, Walser J-C, Pichon S, Bürgmann H, Matthews B (2015) Estimating bacterial diversity for ecological studies: methods, metrics, and assumptions. PLoS One 10(4):e0125356. doi:10.1371/journal.pone.0125356

    Article  PubMed  PubMed Central  Google Scholar 

  • Brabham C, Debolt S (2013) Chemical genetics to probe the cell wall. Front Plant Biotechnol 3:309

    Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, Ver Loren, van Themaat E et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Carbonetto B, Rascovan N, Álvarez R, Mentaberry A, Vázquez MP (2014) Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas. PLoS One 9:1–11

    Article  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology – a review. Soil Biol Biochem 36(8):1275–1288

    Article  CAS  Google Scholar 

  • Ding T, Melcher U (2016) Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS One 11(3):e0150895. doi:10.1371/journal.pone.0150895

    Article  PubMed  PubMed Central  Google Scholar 

  • Downie JA, Walker SA (1999) Plant responses to nodulation factors. Curr Opin Plant Biol 2:483–489

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Motta AC, Reeves DW, Burmester CH, Van Santen E, Osborne JA (2003) Soil microbial communities under conventional till and no-till continuous cotton systems. Soil Biol Biochem 35:1693–1703

    Article  CAS  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR et al (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • Gale WJ, Cambardella CA, Bailey TB (2000) Surface residue and root-derived carbon in stable and unstable aggregates. Soil Sci Soc Am J 64:196–201

    Article  CAS  Google Scholar 

  • Gopal M, Gupta A (2016) Microbiome selection could spur next-generation plant breeding strategies. Front Microbiol 7:1971–1977

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall TJ, Davis WEE (1990) Survival of Bacillus subtilis in silver sugar maple seedlings over a two-year period. Plant Dis 74:608–609

    Article  Google Scholar 

  • Hansen ML, Kregelund L, Nybroe O, Sorensen J (1997) Early colonization of barley roots by Pseudomonas fluorescens studied by immunofluorescence technique and confocal laser scanning microscopy. FEMS Microbiol Ecol 23:353e360

    Article  Google Scholar 

  • Hartmann M, Widmer F (2006) Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Appl Environ Microbiol 72:7804–7812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mader P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194

    Article  PubMed  Google Scholar 

  • Iniguez LA, Dong Y, Carter HD, Ahmer BMM, Stone JM, Triplett E (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant-Microbe Interact 18:169–178

    Article  CAS  PubMed  Google Scholar 

  • Kennedy A, Smith K (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86

    Article  CAS  Google Scholar 

  • Kumar AS, Bais HP (2012) Wired to the roots: impact of root beneficial microbe interactions on the above ground plant physiology and protection. Plant Sign Behav 72:694–706

    CAS  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R (2014) Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.) Biocatal Agric Biotechnol 3:121–128

    Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones CD, Tringe SG, Dangl JL (2015) Plant microbiome. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    Article  CAS  PubMed  Google Scholar 

  • Li B, Lia Y-Y, Wua H-M, Zhanga F-F, Lia C-J, Lia X-X, Lambersb H, Long L (2016) Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. PNAS 113:236496–236501

    Google Scholar 

  • Lundberg D et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl DL (2013) Practical innovations for high-throughput amplicon sequencing. Nat Methods 10:999–1002

    Article  CAS  PubMed  Google Scholar 

  • Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008) The global stoichiometry of litter nitrogen mineralization. Science 321:684–686

    Article  CAS  PubMed  Google Scholar 

  • Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart DM, DiLeo MV (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Frontiers Plant Sci 7:1110. doi:10.3389/fpls.2016.01110

    Article  Google Scholar 

  • Paul EA (2007) Soil microbiology, ecology, and biochemistry in perspective. Soil microbiology, ecology and biochemistry, 3rd edn. Academic, San Diego, pp 3–24

    Book  Google Scholar 

  • Plett JM, Martin F (2011) Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends Genet 27:14–22

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seed borne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant-Microbe Interact 28:212–217

    Article  CAS  PubMed  Google Scholar 

  • Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Micro 8:779–790

    Article  CAS  Google Scholar 

  • Soltani AA, Khavazi K, Asadi-Rahmani H, Omidvari M, Abaszadeh DP, Mirhoseyni H (2010) Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. J Agr Sci 4:106–115

    Google Scholar 

  • Stagnari F, Perpetuini G, Tofalo R, Campanelli G, Leteo F, Della Vella U, Schirone M, Suzzi G, Pisante M (2014) Long-term impact of farm management and crops on soil microorganisms assessed by combined DGGE and PLFA analyses. Front Microbiol 5:644

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokala R, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey FJ, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsurumaru H et al (2015) Metagenomic analysis of the bacterial community associated with the taproot of sugar beet. Microbes Environ 30:63–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner MR, Lundberg DS, del Rio T, Tringe SG, Dangl JF, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Comm 7:12151

    Article  CAS  Google Scholar 

  • Wang W, Wang H, Feng Y, Wang L, Xiao X, Xi Y, Luo X, Sun R, Ye X, Huang Y, Zhang Z, Cui Z (2016) Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River. Scientific Reports 6: Article number 35046

    Google Scholar 

  • Wilkinson V, Lucas RL (1969) Effects of herbicides on the growth of soil fungi. New Phytol 68:709–719

    Article  CAS  Google Scholar 

  • Xia Y, Greissworth E, Mucci C, Williams MA, DeBolt S (2013) Characterization of culturable bacterial endophytes of switchgrass (Panicum virgatum L.) and their capacity to influence plant growth. GCB Bioenergy 5:674–682

    Article  Google Scholar 

  • Xia Y, Petti C, Williams MA, DeBolt S (2014) Experimental approaches to study plant cell walls during plant-microbe interactions. Front Plant Sci 5:540

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Debolt S, Dreyer D, Scott D, Williams M (2015) Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front Plant Sci 6. doi:10.3389/fpls.2015.00490

Download references

Acknowledgment

Work was supported by the National Science Foundation under Cooperative Agreement No. 1355438 and IOS-1256029. US Department of Agriculture Hatch funding and Altria Graduate Research Fellowship to ASB also supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth DeBolt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sanchez-Barrios, A., Sahib, M.R., DeBolt, S. (2017). “I’ve Got the Magic in Me”: The Microbiome of Conventional vs Organic Production Systems. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-5813-4_5

Download citation

Publish with us

Policies and ethics