Skip to main content

Soil–Plant–Microbe Interactions: Use of Nitrogen-Fixing Bacteria for Plant Growth and Development in Sugarcane

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Sugarcane is an important industrial agricultural crop cultivated worldwide for the production of sugar, ethanol, and other related by-products. More than 50 diseases were observed in sugarcane caused by different plant pathogenic microbes, i.e., fungi, bacteria, viruses, phytoplasmas, and nematodes. Sugarcane is a lengthy crop, so it requires more amounts of plant nutrients, i.e., N, P, and K, as well as other micro- and macronutrients. Thus, the chances of diseases are more to adapt the favorable conditions for pathogens survival. Nitrogen is one of the greatest limiting nutritional aspects for the growth of plants. An abundant supply of nitrogen is required for the plant’s early growth. Higher doses of fertilizers, chemicals, and pesticides are applied by farmers to sugarcane to promote early growth and development of crops, to control the diseases, and to increase the yield in many countries. But the continuous use of these chemicals leads to resistance development against the pathogens and may cause negative effects on the environment and contamination of soil and water in addition to a serious hazard to human and animal health. Because of these facts, we focus to find an alternative method for chemical usage. It has been acknowledged that a large number of naturally occurring plant growth-promoting nitrogen-fixing microbes are present in soil/rhizosphere. A wide variety of mechanisms are used by these bacteria to colonize in the rhizosphere such as biological control against plant pathogens, biological nitrogen fixation, and phytohormone production, as well as their ability to enhance nutrient availability. A biological nitrogen-fixing microbe has massive potential to replace the chemical fertilizers and can be used as biofertilizer in plants. In this chapter, the role of bacteria associated with nitrogen fixation and colonizing the internal parts of the sugarcane plant without exerting any core destruction to their host plant is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeysingha NS, Weerarathne CS (2010) A preliminary study on quantification of biological nitrogen fixation in sugarcane grown in Sevanagala in Sri Lanka. J Natl Sci Found Sri Lanka 38:207–210

    Google Scholar 

  • Asis CAJ, Kubota M, Ohta H et al (2000) Isolation and partial characterization of endophytic diazotrophs associated with Japanese sugarcane cultivar. Soil Sci Plant Nutr 46:759–765

    Article  Google Scholar 

  • Bae YS, Knudson GR (2000) Co-transformation of Trichoderma harzianum with beta-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils. Appl Environ Microbiol 66:810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:234–266

    Article  CAS  Google Scholar 

  • Balser TC, Firestone MK (2005) Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73:395–341

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Plant growth-promoting. In: Hillel D (ed) Encyclopedia of soils in the environment, vol 1. Elsevier, Oxford, pp 103–115

    Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433

    Article  CAS  PubMed  Google Scholar 

  • Begcy K, Mariano ED, Gentile A et al (2012) A novel stress-induced sugarcane gene confers tolerance to drought, salt and oxidative stress in transgenic tobacco plants. PLoS One 7(9):e44697. doi:10.1371/journal.pone.0044697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beneduzia A, Moreirab F, Costab PB et al (2013) Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Appl soil Ecol 63:94–104

    Google Scholar 

  • Berg G (2009) Plantmicrobe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Roskot N, Steidle A et al (2002) Plant dependent genotypic and phenotypic diversity of antagonistic Rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia CR (2008) Molecular mechanisms of plant and microbe coexistence. In: Nautiyal CS, Dion P. (eds) ISBN: 978–3–540-75574-6Soil biology, 15th edn. ©Springer-Verlag, Berlin, p 53

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bokhtiar SM, Paul GC, Rashid MA et al (2001) Effect of press mud and organic nitrogen on soil fertility and yield of sugarcane grown in high Ganges river flood plain soils of Bangladesh. Indian Sugar 51(4):235–240

    Google Scholar 

  • Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65(5):497–503

    Article  CAS  PubMed  Google Scholar 

  • Brand A (1995) GFP in drosophila. Trends Genet 11:324–325

    Article  CAS  PubMed  Google Scholar 

  • Caballero-Mellado J, Fuentes-Ramirez LE, Reis VM et al (1995) Genetic structure of Acetobacter diazotrophicus populations and identification of a new genetically distant group. Appl Environ Microbiol 61:3008–3013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caballero-Mellado J, Onofre-Lemus J, Estrada-de los Santos P et al (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319

    Google Scholar 

  • Cabanillas C, Stobbia D, Ledesma A (2013) Production and income of basil in and out of season with vermin composts from rabbit manure and bovine ruminal contents alternatives to urea. J Clean Prod 47:77–84

    Article  CAS  Google Scholar 

  • Cassan F, Maiale S, Masciarelli O et al (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. Eur J Soil Biol 45:12–19

    Article  CAS  Google Scholar 

  • Chet I, Chernin L (2002) Biocontrol, microbial agents in soil. In: Bitton G (ed) Encyclopedia of environmental microbiology. Willey, New York, pp 450–465

    Google Scholar 

  • Choudhary RL, Wakchaure GC, Minhas PS et al (2016) Response of ratoon sugarcane to stubble shaving, off-barring, root pruning and band placement of basal fertilizers with a multipurpose drill machine. Sugar Tech. doi:10.1007/s12355-016-0438-x

  • Compant S, Duffy B, Nowak J et al (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. APS Press, St Paul

    Google Scholar 

  • Croft BJ, Magarey RC (2000) Pachymetra root rot. In: Rott P, Bailey RA, Comstock JC, Croft BJ, Saumtally AS (eds) A guide to sugarcane diseases. CIRAD/ISSCT, CIRAD Publication Services, Montpellier, pp 126–130

    Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Dotaniya ML, Datta SC (2014) Impact of bagasse and press mud on availability and fixation capacity of phosphorus in an inceptisol of north India. Sugar Tech 16(1):109–112

    Article  CAS  Google Scholar 

  • Dotaniya ML, Datta SC, Biswas DR et al (2016) Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. Int J Recycl Org Waste Agri 5(3):185–194

    Article  Google Scholar 

  • Durbak A, Yao H, Mc-Steen P (2012) Hormone signaling in plant development. Curr Opin Plant Biol 15:92–96

    Article  CAS  PubMed  Google Scholar 

  • Errampali D, Leung K, Cassidy MB et al (1999) Application of the green fluorescent protein as a molecular marker in environmental microorganisms. J Microbiol Methods 35:187–1999

    Article  Google Scholar 

  • Farrar K, Bryant D, Selby NC (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12:1193–1206

    Google Scholar 

  • Fierer N, Strickland MS, Liptzin D et al (2009) Global patterns in below ground communities. Ecol Lett 12:1238–1249

    Article  PubMed  Google Scholar 

  • Fischer D, Pfitzner B, Schmid M et al (2012) Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.) Plant Soil 356:83–99

    Article  CAS  Google Scholar 

  • Fuglie K (2012) Productivity growth and technology capital in the global agricultural economy. In: Fuglie K, Wang SL, Ball VE (eds) Productivity growth in agriculture: an international perspective. CABI, Washington, DC, pp 335–368

    Chapter  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo): 963401 doi:10.6064/2012/963401

  • Glick BR (2015) Issues regarding the use of PGPB. In: Glick BR (ed) Beneficial plant bacterial interaction. Springer Publishing, Switzerland, pp 223–243

    Google Scholar 

  • Govindarajan M, Balandreau J, Muthukumarasamy R et al (2006). Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant Soil 280:239–252

    Google Scholar 

  • Govindarajan M, Kwon SW, Weon HY (2007) Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World J Microbiol Biotechnol 23:997–1006

    Article  CAS  Google Scholar 

  • Govindarajan M, Jebanesan A, Reetha D et al (2008) Antibacterial activity of Acalypha indica L. Eur Rev Med Pharm Sci 12:299–302

    CAS  Google Scholar 

  • Grivet L, Arruda P (2001) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127

    Article  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Gantner S, Schuhegger R et al (2004) N-acyl homoserine lactones of rhizosphere bacteria trigger systemic resistance in tomato plants. In: Lugtenberg B, Tikhonovich I, Provorov N (eds) Biology of molecular plant–microbe interactions, vol 4. APS, St. Paul, pp 554–556

    Google Scholar 

  • Hellriegel H, Wilfarth H (1888) Untersuchungen uber die Stickstoffnahrung der Gramineen und Leguminosen. Beilageheft zu der Zeitschrift des Vereins fur Rubenzucker-Industrie Deutschen Reichs, p 234

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 3(11):1–18

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Uberneue Erfahrungen und Probleme auf dem Gebiet der Bodenba kteriologie und unterbesonderer Berucksichtigung der Grundungungund Brache. Arb Dtsch Landwirtschafts-Ges 98:59–78

    Google Scholar 

  • Hirsch AM (2004) Plant–microbe symbioses: a continuum from commensalism to parasitism. Symbiosis 37:345–363

    CAS  Google Scholar 

  • Hogberg MN, Hogbom L, Kleja DB (2013) Soil microbial community indices as predictors of soil solution chemistry and N leaching in Picea abies (L.) Karst forests in S. Sweden. Plant Soil 372(1):507–522

    Article  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus spp. strain BH72 as a model for nitrogen fixing grass endophytes. J Biotechnol 106:169–178

    Article  CAS  PubMed  Google Scholar 

  • Iwata K, Azlan A, Yamakawa H et al (2010) Ammonia accumulation in culture broth by the novel nitrogen-fixing bacterium, Lysobacter sp. E4. J Biosci Bioeng 110(4):415–418

    Article  CAS  PubMed  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. F Crop Res 65:197–209

    Article  Google Scholar 

  • Kachroo A, Robin GP (2013) Systemic signaling during plant defense. Curr Opin Plant Biol 16:527–533

    Article  CAS  PubMed  Google Scholar 

  • Kamilova F, Validov S, Azarova T et al (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Kruasuwan W, Thamchaipenet A (2016) Diversity of culturable plant growth-promoting bacterial endophytes associated with sugarcane roots and their effect of growth by co-inoculation of diazotrophs and actinomycetes. J Plant Growth Regul 35:1074–1087

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Station de Pathologie Vegetaleet Phyto-Bacteriologie (ed). Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, vol. II. Gilbert-Clarey, Tours, France, p 879–882

    Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499

    Article  CAS  PubMed  Google Scholar 

  • Ladeiro B (2012) Saline agriculture in the 21st century: Using salt contaminated resources to cope food requirements. J Bot. doi:10.1155/2012/310705

  • Laslo E, Gyorg Y, Mara E et al (2012) Screening of plant growth promoting rhizobacteria as potential microbial inoculants. Crop Prot 40:43–48

    Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  PubMed  Google Scholar 

  • Li YR, Yang LT (2015) Sugarcane agriculture and sugar industry in China. Sugar Tech 17(1):1–8

    Article  Google Scholar 

  • Li YR, Zhou XZ, Yang LT (2015) Biological nitrogen fixation in sugarcane and nitrogen transfer from sugarcane to cassava in an intercropping system. Inter J Sci Nat 6:214–218

    Google Scholar 

  • Lim SL, Lee LH, Wu TY (2016) Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. J Clean Prod 111:262–278

    Article  Google Scholar 

  • Lima E, Boddey RM, Dobereiner J (1987) Quantification of biological nitrogen fixation associated with sugar cane using a 15N-aided nitrogen balance. Soil Biol Biochem 19:165–170

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV (2002) Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383

    Article  CAS  PubMed  Google Scholar 

  • Manoharachary C, Mukerji KG (2006) Microbial activity in the rhizosphere. In: Mukerji KG, Manoharachary C, Singh J (eds) Soil biology, vol 7. ©Springer-Verlag, Berlin

    Google Scholar 

  • Mehnaz S, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20:1614–1623

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Pizzirani-Kleiner AA, Araujo WL et al (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73:7259–7267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirza MS, Ahmad W, Latif F et al (2001) Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micropropagated sugarcane in vitro. Plant Soil 237:47–54

    Article  CAS  Google Scholar 

  • Muller H, Westendorf C, Leitner E et al (2009) Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiol Ecol 67:468–467

    Article  PubMed  CAS  Google Scholar 

  • Nacry P, Bouguyon E, Gojon A (2013) Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil. doi:10.1007/s11104-013-1645–9

  • Nasare K, Yadav A, Singh AK et al (2007) Molecular and symptom analysis reveal the presence of new phytoplasmas associated with sugarcane grassy shoot disease in India. Plant Dis 91:1413–1418

    Article  CAS  Google Scholar 

  • Nielsen MN, Winding A (2002) Microorganisms as indicators of soil health. NERI Technical Report No. 388. National Environmental Research Institute, Ministry of the Environment, Denmark

    Google Scholar 

  • Oldroyd EDG, Murray JD, Poole PS et al (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira ALM, de Canuto EL, Urquiaga S et al (2006) Yield of micropropagated sugarcane varieties in different soil types following with diazotrophic bacteria. Plant Soil 284(1):23–32

    Article  CAS  Google Scholar 

  • Oliveira ALM, Canuto EL, Urquiaga S et al (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32

    Article  CAS  Google Scholar 

  • Oliveira ALM, Stoffels M, Schmid M et al (2009) Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur J Soil Biol 45:106–113

    Article  CAS  Google Scholar 

  • Orlando BH, ThommaBart PHJ, Carmona E et al (2005) Identification of sugarcane genes induced in disease resistant somaclones upon inoculation with Ustilago scitaminea or Bipolaris sacchari. Plant Physiol Biochem 43:1115–1121

    Google Scholar 

  • Pal S, Rahija M, Nienke-Beintema N (2012) India: recent developments in agricultural research, country note. International Food Policy Research Institute (IFPRI), Washington, DC

    Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Yeoh YK et al (2014) A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microb Biotechnol 7:142–154

    Google Scholar 

  • Pedraza RO (2008) Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 125:25–35

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa FO, Monteiro RA, Wassem R et al (2011) Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses. PLoS Genet 7, e1002064. doi:10.1371/journal.pgen.1002064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips DA, Fox TC, King MD et al (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierik R, Tholen D, Poorter H et al (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 4:176–183

    Article  CAS  Google Scholar 

  • Poppenborg L, Friehs K, Flaschel E (1997) The green fluorescent protein is a versatile reporter for bioprocess monitoring. J Biotechnol 58:79–88

    Article  CAS  PubMed  Google Scholar 

  • Pray CE, Fuglie KO (2015) Agricultural research by the private sector. Annu Rev Resour Econ 7:399–424

    Article  Google Scholar 

  • Pray CE, Nagarajan L (2012) Innovation and research by private agribusiness in India. IFPRI Discussion Paper 01181, IFPRI, Washington, DC

    Google Scholar 

  • Pray CE, Nagarajan L (2014) The transformation of the Indian agricultural input industry: has it increased agricultural R and D. Agric Econ 45:145–156

    Article  Google Scholar 

  • Ramos PL, Van Stefanie T, Fabiano TL et al (2011) Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas Pavanii Sp. Nov. Int J Syst Evol Microbiol 61:926–931

    Google Scholar 

  • Rao GP, Ford RE (2000) Vectors of virus and phytoplasma diseases of sugarcane: an overview. In: Rao GP, Ford RE, Tosic M, Teakle DS (eds) Sugarcane pathology, Vol. III. Virus and phytoplasma diseases. Science Publishers, Hamshere, pp 265–314

    Google Scholar 

  • Rao GP, Viswanathan R, Singh SB (2002) Current situation of sugarcane diseases in India. In: Singh SB, Rao GP, Easwaramoorthy S (eds) Sugarcane crop management. SCI Tech Publishing LLC, Houstan, p 734

    Google Scholar 

  • Reis VM, Lee S, Kennedy C (2007) Biological nitrogen fixation in sugarcane. In: Elmerich C, Newton WE (ed) Associative and endophytic nitrogen-fixing bacteria. Springer. p 213–232

    Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125

    Article  Google Scholar 

  • Robinson N, Brackin R, Vinall K et al (2011) Nitrate paradigm does not hold up for sugarcane. PLoS One 6(4):e19045. doi:10.1371/journal.pone.0019045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell CompPhysiol 59:223–239

    Article  CAS  Google Scholar 

  • da Silva M, Antonio C, de Oliveira P et al (2012) Survival of endophytic bacteria in polymer-based inoculants and efficiency of their application to sugarcane. Plant Soil 356:231–243

    Article  CAS  Google Scholar 

  • Singh RK, Kumar DP, Singh P et al (2014) Multifarious plant growth promoting characteristics of chickpea rhizosphere associated Bacilli help to suppress soil-borne pathogens. Plant Growth Regul 73(1):91–101

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Solanki MK, Kumar S, Pandey AK et al (2012) Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Sci Tech 22:203–217

    Article  Google Scholar 

  • Solanki MK, Wang Z, Wang FY (2016) Intercropping in sugarcane cultivation influenced the soil properties and enhanced the diversity of vital diazotrophic bacteria. Sugar Tech. doi:10.1007/s12355-016-0445-y

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  PubMed  Google Scholar 

  • Souza R, de Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Spear RN, Cullen D, Andrews JH (1999) Fluorescent labels, confocal microscopy, and quantitative image analysis in study of fungal biology. Methods Enzymol 307:607–623

    Article  CAS  PubMed  Google Scholar 

  • Stephane C, Christophe C, Angela S (2010) Plant growth-promoting bacteria in the rhizo and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Sternberg C, Christensen BB, Johansen T et al (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65:4108–4117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suslow TV, Kloepper JW, Schroth MN et al (1979) Beneficial bacteria enhance plant growth Rhizobacteria. Calif Agric Exp Stn 33:15–17

    Google Scholar 

  • Taghavi S, Garafola C, Monchy S et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75(3):748–757

    Article  CAS  PubMed  Google Scholar 

  • Taule C, Mareque C, Barlocco C et al (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356:35–49

    Article  CAS  Google Scholar 

  • Tikhonovich IA, Provorov NA (2011) Microbiology is the basis of sustainable agriculture: an opinion. Ann Appl Biol 159:155–116

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA et al (2006) Hormones and hormone-like substances of microorganisms. A review. Appl Biochem Microbiol 42:229–235

    Article  CAS  Google Scholar 

  • Unge AR, Molback TL, Jansson J (1999) Simultaneously monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-lux AB marker system. Appl Enviorn Microbiol 65:813–821

    CAS  Google Scholar 

  • Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugarcane: nitrogen-15 and nitrogen-balance estimates. Soil Sci Soc Am J 56(105–11):4

    Google Scholar 

  • Urquiaga S, Xavier RP, de Morais RF et al (2012) Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant Soil 356:5–21

    Article  CAS  Google Scholar 

  • Valdivia R, Hromockyj A, Monack D et al (1996) Applications for green fluorescent protein (GFP) in the study of host-pathogen interactions. Gene 173:47–52

    Article  CAS  PubMed  Google Scholar 

  • Vanden Wymelenberg AJ, Cullen D, Spear RN et al (1997) Expression of green fluorescent protein in Aureobasidium pullulans and quantification of the fungus on leaf surfaces. Bio Techniques 23:686–690

    Google Scholar 

  • Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a state of art. Rev Environ Sci Biotechnol 13:429–466

    Article  Google Scholar 

  • Veronica S, Fabricio C, Oscar M et al (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Viswanathan R, Rao GP (2011) Disease scenario and management of major sugarcane diseases in India. Sugar Tech 13(4):336–353

    Article  CAS  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM et al (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Wirthmueller L, Maqbool A, Banfield MJ (2013) On the front line: structural insights into plant–pathogen interactions. Nat Rev Microbiol 11:761–776

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Bernard SM, Andersen GL et al (2009) Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2:428–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Y, Yang L, Huang S et al (2015) A new nitrogen fixing endo-bacterium strain isolated from sugarcane stem. In: Guilin PR (ed) Proceedings of international symposium on technologies to improve sugar productivity in developing countries. China Agricultural Science, Beijing, pp 487–490

    Google Scholar 

  • Yuan ZC, Haudecoeur E, Faure D et al (2008) Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and gamma-amino butyric acid reveals signalling cross-talk and Agrobacterium–plant co-evolution. Cell Microbiol 10:2339–2354

    Article  CAS  PubMed  Google Scholar 

  • Zanin L, Tomasi N, Wirdnam C et al (2014) Isolation and functional characterization of a high affinity urea transporter from roots of Zea mays. BMC Plant Biol 14:222. doi:10.1186/s12870-014-0222–6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Webliography

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Singh, R.K., Singh, P., Li, HB., Yang, LT., Li, YR. (2017). Soil–Plant–Microbe Interactions: Use of Nitrogen-Fixing Bacteria for Plant Growth and Development in Sugarcane. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-5813-4_3

Download citation

Publish with us

Policies and ethics