Skip to main content

LED Lighting in Horticulture

  • Chapter
  • First Online:

Abstract

The aim of this study is to explore the potential of light-emitting diode (LED) technology for horticultural plant lighting and to provide an overview about the LED light effects on growth, yield, and nutritional quality of green leafy vegetables, fruits, vegetables, and ornamental plants. The spectral effects of LEDs, as a sole source of lighting, disclose the main functions of light colors on plant growth, development, and metabolism as well as heterogeneous sensitivity of different plant species and varieties. The natural background lighting in a greenhouse mediates these spectral responses and reveals a close interaction between the applied supplemental lighting and variable environmental conditions. Here, we summarize the findings of recent studies to draw a comprehensive illustration for the assignment of the obtained patterns for the practical applications in the greenhouse or in closed environment horticulture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal A, Dutta Gupta S (2016) Impact of light-emitting-diodes (LEDs) and its potential on plant growth and development in controlled-environment plant production system. Curr Biotechnol 5:28–43

    Article  CAS  Google Scholar 

  • Bagdonavičienė A, Brazaitytė A, Viršilė A, Samuolienė G, Jankauskienė J, Sirtautas R, Sakalauskienė S, Miliauskienė J, Maročkienė N, Duchovskis P (2015) Cultivation of sweet pepper (Capsicum annum L.) transplants under high pressure sodium lamps supplemented by light emitting diodes of carious wavelengths. Acta Sci Pol Hortorum Cultus 14:3–14

    Google Scholar 

  • Barta DJ, Tibbits TW, Bula RJ, Morrow RC (1992) Evaluation of light emitting diode characteristics for a space-based plant irradiation source. Adv Space Res 12:141–149

    Article  CAS  PubMed  Google Scholar 

  • Bergstrand KJ, Asp H, Schüssler HK (2016) Growth control of ornamental and bedding plants by manipulation of photoperiod and light quality. Acta Hortic 1134:33–39

    Article  Google Scholar 

  • Bian ZH, Cheng RF, Yang QC, Wang J (2016) Continuous light from red, blue, and green light-emitting diodes reduces nitrate content and enhances phytochemical concentrations and antioxidant capacity in lettuce. J Amer Soc Hort Sci 141:186–195

    CAS  Google Scholar 

  • Bliznikas Z, Žukauskas A, Samuolienė G, Viršilė A, Brazaitytė A, Jankauskienė J, Duchovskis P, Novičkovas A (2012) Effect of supplementary pre-harvest LED lighting on the antioxidant and nutritional properties of green vegetables. Acta Hortic 939:85–91

    Article  Google Scholar 

  • Bourget CM (2008) An introduction to light-emitting diodes. HortScience 43:1944–1946

    Google Scholar 

  • Brazaitytė A, Ulinskaitė R, Duchovskis P, Samuolienė G, Šikšnianienė JB, Šabajevienė G, Baranauskis K, Stanienė G, Tamulaitis G, Bliznikas Z, Žukauskas A (2006) Optimization of lighting spectrum for photosynthetic system and productivity of lettuce by using light-emitting diodes. Acta Hortic 711:183–188

    Article  Google Scholar 

  • Brazaitytė A, Duchovskis P, Urbonavičiūtė A, Samuolienė G, Jankauskienė J, Kasiulevičiūtė-Bonakerė A, Bliznikas Z, Novičkovas A, Breivė K, Žukauskas A (2009) The effect of light-emitting diodes lighting on cucumber transplants and after-effect on yield. Zemdirbyste-Agriculture 96:102–118

    Google Scholar 

  • Brazaitytė A, Viršilė A, Samuolienė G, Jankauskienė J, Sakalauskienė S, Sirtautas R, Novičkovas A, Dabašinskas L, Vaštakatiė V, Miliauskienė J, Duchovskis P (2016) Light quality: growth and nutritional value of microgreens under indoor and greenhouse conditions. Acta Hortic 1134:277–284

    Article  Google Scholar 

  • Bugbee B (2016) Towards an optimal spectral quality for plant growth and development: the importance of radiation capture. Acta Hortic 1134:1–12

    Article  Google Scholar 

  • Bula RJ, Morrow RC, Tibbits TW, Barta DJ, Ignatius RW, Martin TS (1991) Light emitting diodes as a radiation source for plants. HortScience 26:203–205

    CAS  PubMed  Google Scholar 

  • Carvalho SD, Folta KM (2014) Environmentally modified organisms—expanding genetic potential with light. Crit Rev in Plant Sci 33:486–508

    Article  CAS  Google Scholar 

  • Carvalho SD, Schwieterman ML, Abrahan CE, Colquhoun TA, Folta KM (2016) Light quality dependent changes in morphology, antioxidant capacity, and volatile production in Sweet Basil (Ocimum basilicum). Front Plant Sci 7:1328. doi:10.3389/fpls.2016.01328

    PubMed  PubMed Central  Google Scholar 

  • Chang CL, Chang KP (2014) The growth response of leaf lettuce at different stages to multiple wavelength-band light-emitting diode lighting. Sci Hortic 179:78–84

    Article  CAS  Google Scholar 

  • Chen XL, Xu XZ, Guo WZ, Wang LC, Qiao XJ (2016) Growth and nutritional properties of lettuce affected by mixed irradiation of white and supplemental light provided by light-emitting diode. Sci Hort 200:111–118

    Article  CAS  Google Scholar 

  • Chia PL, Kubota C (2010) End-of-day far-red light quality and dose requirements for tomato rootstock hypocotyl elongation. HortScience 45:1501–1506

    Google Scholar 

  • Colonna E, Rouphael Y, Barbieri G et al. (2016) Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem 199:702–710

    Article  CAS  PubMed  Google Scholar 

  • Cope KR, Bugbee B (2013) Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light. HortScience 48:504–509

    CAS  Google Scholar 

  • Craig DS, Runkle ES (2012) Using LEDs to quantify the effect of the red to far-red ratio of night-interruption lighting on flowering of photoperiodic crops. Acta Hortic 956:179–186

    Article  Google Scholar 

  • Craig DS, Runkle ES (2013) A moderate to high red to far-red light ratio from light emitting diodes controls flowering of short-day plants. J Am Soc Hort Sci 138:167–172

    CAS  Google Scholar 

  • Currey CJ, Lopez RG (2013) Cuttings of impatiens, pelargonium, and petunia propagated under light-emitting diodes and high-pressure sodium lamps have comparable growth, morphology, gas exchange, and post-transplant performance. HortScience 48:428–434

    CAS  Google Scholar 

  • Demotes-Mainard S, Peron T, Corot A (2016) Plant responses to red and far red lights, applications in horticulture. Eviron Exp Bot 121:4–21

    Article  CAS  Google Scholar 

  • Deram P, Lefsrud MG, Orsat V (2014) Supplemental lighting orientation and red-to blue ratio of light-emitting diodes for greenhouse tomato production. HortScience 49:448–452

    Google Scholar 

  • Dzakovich MP, Gomez C, Mitchell CA (2015) Tomatoes grown with light-emitting diodes or high-pressure sodium supplemental lights have similar fruit-quality attributes. HortScience 50:1498–1502

    CAS  Google Scholar 

  • Folta KM, Carvalho SD (2015) Photoreceptors and control of horticultural plant traits. HortScience 50:1274–1280

    CAS  Google Scholar 

  • Folta K, Maruhnich SA (2007) Green light: a signal to slow down or stop. J Exp Bot 58:3099–3111

    Article  CAS  PubMed  Google Scholar 

  • Gerovac JR, Craver JK, Boldt JK, Lopez RG (2016) Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of brassica microgreens. HortScience 51:497–503

    CAS  Google Scholar 

  • Goins GD, Yorio NC, Sanwo MM, Brown CS (1997) Photomorphogenesis, photosynthesis and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J Exp Bot 48:1407–1413

    Article  CAS  PubMed  Google Scholar 

  • Goins GD, Ruffe LM, Cranston NA, Yorio NC, Wheeler RM, Sager JC (2001) Salad crop production under different wavelengths of red light-emitting diodes (LEDs). SAE technical paper. In: 31st international conference on environmental Systems, 9–12 July 2001, Orlando, FL, USA, pp 1–9

    Google Scholar 

  • Gómez C, Mitchell CA (2015) Growth responses of tomato seedlings to different spectra of supplemental lighting. HortScience 50:112–118

    Google Scholar 

  • Gómez C, Mitchell CA (2016) Physiological and productivity responses of high-wire tomato as affected by supplemental light source and distribution within the canopy. JASHS 141:196–208

    Google Scholar 

  • Gómez C, Morrow RC, Bourget CM, Massa GD, Mitchell CA (2013) Comparison of intracanopy light-emitting diode towers and overhead high-pressure sodium lamps for supplemental lighting of greenhouse-grown tomatoes. HortTechnology 23:93–98

    Google Scholar 

  • Goto E, Hayashi K, Furuyama S, Hikosaka S, Ishigami Y (2016) Effect of UV light on phytochemical accumulation and expression of anthocyanin biosynthesis genes in red leaf lettuce. Acta Hortic 1134:179–185

    Article  Google Scholar 

  • Guo X, Hao X, Khosla S, Kumar KGS, Cao R, Bennett N (2016) Effect of LED interlighting combined with overhead HPS light on fruit yield and quality of year-round sweet pepper in commercial greenhouse. Acta Hortic 1134:71–78

    Article  Google Scholar 

  • Hao XM, Zheng JM, Little C, Khosla S (2012) LED inter-lighting in year-round greenhouse mini-cucumber production. Acta Hortic 956:335–340

    Article  Google Scholar 

  • Hernandez R, Kubota C (2016) Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ Exp Bot 121:66–74

    Article  CAS  Google Scholar 

  • Hernández R, Kubota C (2012) Tomato seedling growth and morphological responses to supplemental LED lighting red:blue ratios under varied daily light integrals. Acta Hortic 956:187–194

    Article  Google Scholar 

  • Hernández R, Kubota C (2014a) Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. Sci Hort 173:92–99

    Article  Google Scholar 

  • Hernández R, Kubota C (2014b) LEDs supplemental lighting for vegetable transplant production: spectral evaluation and comparisons with HID technology. Acta Hortic 1037:829–835

    Article  Google Scholar 

  • Hernández R, Eguchi T, Kubota C (2016) Growth and morphology of vegetable seedlings under different blue and red photon flux ratios using light-emitting diodes as sole-source lighting. Acta Hortic 1134:195–200

    Article  Google Scholar 

  • Ho CH, Yang CM, Hsiao CL (2012) Effects of nighttime lighting with specific wavebands on flowering of chrysanthemum crop. Environ Bioinform 9:265–277

    CAS  Google Scholar 

  • Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, van Ieperen W, Harbinson J (2010) Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61:3107–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam HR, Gislerød HR, Torre S, Olsen JE (2015) Control of shoot elongation and hormone physiology in poinsettia by light quality provided by light emitting diodes—a mini review. Acta Hortic 1104:131–136

    Article  Google Scholar 

  • Johansen NS, Väninen I, Pinto DM, Nissinen AI, Shipp L (2011) In the light of new greenhouse technologies: 2. Direct effects of artificial lighting arthropods and integrated pest management in greenhouse crops. An Appl Biol 159:1–27

    Article  Google Scholar 

  • Johkan M, Shoji K, Goto F, Hashida S, Yoshihara T (2010) Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809–1814

    Google Scholar 

  • Johkan M, Shoji K, Goto F, Hashida S, Yoshihara T (2012) Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ Exp Bot 75:128–133

    Article  CAS  Google Scholar 

  • Jokinen K, Särkkä LE, Näkkilä J (2012) Improving sweet pepper productivity by LED inter lighting. Acta Hortic 956:59–66

    Article  Google Scholar 

  • Kanechi M, Maekawa A, Nishida Y, Miyashita E (2016) Effects of pulsed lighting based light-emitting diodes on the growth and photosynthesis of lettuce leaves. Acta Hortic 1134:207–214

    Article  Google Scholar 

  • Kim HH, Goins GD, Wheeler RM, Sager JC (2004) Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience 39:1617–1622

    PubMed  Google Scholar 

  • Kim K, Kook H, Jang J, Lee WH, Kamala-Kannan S, Chae JC, Lee KJ (2013) The effect of blue-light-emitting diodes on antioxidant properties and resistance to Botrytis cinerea in tomato. J Plant Pathol Microb 4:203–207

    CAS  Google Scholar 

  • Kopsell DA, Sams CE (2015) Blue wavelengths from LED lighting increase nutritionally important metabolites in specialty crops. HortScience 50:1285–1288

    CAS  Google Scholar 

  • Kopsell DA, Sams CE, Barickman TC (2014) Sprouting broccoli accumulate higher concentrations of nutritionally important metabolites under narrow-band light emitting diode lighting. HortScience 139:469–477

    CAS  Google Scholar 

  • Kozai T (2015) Plant factory, an indoor vertical farming system for efficient quality food production. Academic Press, USA

    Google Scholar 

  • Kubota C, Chia P, Yang Li Q (2012) Applications of far-red light emitting diodes in plant production under controlled environments. Acta Hortic 952:59–66

    Article  Google Scholar 

  • Kumar KGS, Hao X, Khosla S, Guo X, Bennett N (2016) Comparison of HPS lighting and hybrid lighting with top HPS and intra-canopy LED lighting for high-wire mini-cucumber production. Acta Hortic 1134:111–117

    Article  Google Scholar 

  • Lee MJ, Park SY, Oh MM (2015) Growth and cell division of lettuce plants under various ratios of red to far-red light-emitting didoes. Hortic Environ Biote 56:188–194

    Google Scholar 

  • Lee MJ, Son KH, Oh MM (2016) Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic Environ Biote 57:139–147

    Article  Google Scholar 

  • Lefsrud MG, Kopsell DA, Sams CE (2008) Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience 43:2243–2244

    Google Scholar 

  • Li Q, Kubota C (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59–64

    Article  CAS  Google Scholar 

  • Li H, Tang C, Xu Z, Liu X, Han X (2012) Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). J Agr Sci 4:262–273

    Google Scholar 

  • Liao Y, Suzuki K, Yu W, Zhuang D, Takai Y, Ogasawara R, Shimazu T, Fukui H (2014) Night break effect of LED light with different wavelengths on floral bud differentiation of Chrysanthemum morifolium Ramat ‘Jimba’ and ‘Iwa no hakusen’. Environ Control Biol 52:45–50

    Article  Google Scholar 

  • Lin KH, Huang MY, Huang WD, Hsu MH, Yang ZW, Yang CM (2013) The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Hort 150:86–91

    Article  Google Scholar 

  • Liu XY, Chang TT, Guo SR, Xu ZG, Li J (2011) Effect of different light quality of LED on growth and photosynthetic character in cherry tomato seedling. Acta Hortic 907:325–330

    Article  CAS  Google Scholar 

  • Lu N, Maruo T, Johkan M, Hohjo M, Tsukakoshi S, Ito Y, Ichimura T, Shinoara Y (2012) Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density. Environ Control Biol 50:63–74

    Google Scholar 

  • Lurie-Luke E (2014) Product and technology innovation: what can biomimicry inspire? Biotechnol Adv 32:1494–1505

    Article  PubMed  Google Scholar 

  • Massa GD, Kim HH, Wheeler RM, Mitchell CA (2008) Plant productivity in response to LED lighting. HortScience 43:1951–1956

    Google Scholar 

  • Massa G, Graham T, Haire T, Flemming C II, Newsham G, Wheeler R (2015) Light-emitting diode light transmission through leaf tissue of seven different crops. HortScience 50:501–506

    Google Scholar 

  • Matsuda R, Ohashi-Kaneko K, Fujiwara K, Kurata K (2007) Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia olearacea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Sci Plant Nutr 53:459–465

    Article  CAS  Google Scholar 

  • McCree KJ (1971) The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9:191–216

    Google Scholar 

  • Meng Q, Runkle ES (2015) Low intensity blue light in night-interruption lighting does not influence flowering of herbaceous ornamentals. Sci Hortic 186:230–238

    Article  Google Scholar 

  • Meng Q, Runkle ES (2016) Moderate-intensity blue radiation can regulate flowering, but not extension growth, of several photoperiodic ornamental crops. Environ Exp Bot. doi:10.1016/j.envexpbot.2016.10.006

    Google Scholar 

  • Mitchell CA, Both AJ, Bourget CM, Burr JF, Kubota C, Lopez RG, Morrow RC, Runkle ES (2012) LEDs: the future of greenhouse lighting. Chron Horticult 52:6–10

    Google Scholar 

  • Mitchell CA, Dzakovich MP, Gomez C, Lopez R, Burr JF, Hernandez R, Kubota C, Currey CJ, Meng Q, Runkle ES, Bourget CM, Morrow RC, Both AJ (2015) Light-emitting diodes in horticulture. In: Janick J (ed) Horticultural reviews, vol 43. Wiley, Hoboken

    Google Scholar 

  • Mizuno T, Amaki W, Watanabe H (2011) Effects of monochromatic light irradiation by LED on the growth and anthocyanin contents in leaves of cabbage seedlings. Acta Hortic 907:179–184

    Article  CAS  Google Scholar 

  • Morrow RC (2008) LED lighting in horticulture. HortScience 43:1947–1950

    Google Scholar 

  • Mou B (2012) Nutritional quality of lettuce. Curr Nutr Food Sci 8(3):177–187

    Article  CAS  Google Scholar 

  • Nanya K, Ishigami Y, Hikosaka S, Goto E (2012) Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta Hortic 956:261–266

    Article  Google Scholar 

  • Naznin MT, Lefsrud M, Gravel V, Hao X (2016) Different ratios of red and blue LED light effects on coriander productivity and antioxidant properties. Acta Hortic 1134:223–229

    Article  Google Scholar 

  • Nelson JA, Bugbee B (2014) Economic analysis of greenhouse lighting: light emitting diodes vs. high intensity discharge fixtures. PLoS ONE 9(6):e99010. doi:10.1371/journal.pone.0099010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicole CCS, Charalambous F, Martinakos S, van de Voort S, Li Z, Verhoog M, Krijn M (2016) Lettuce growth and quality optimization in a plant factory. Acta Hortic 1134:231–238

    Article  Google Scholar 

  • Novičkovas A, Brazaitytė A, Duchovskis P, Jankauskienė J, Samuolienė G, Viršilė A, Sirtautas R, Bliznikas Z, Žukauskas A (2012) Solid-state lamps (LEDs) for the short-wavelength supplementary lighting in greenhouses: experimental results with cucumber. Acta Hortic 927:723–730

    Article  Google Scholar 

  • Ohashi-Kaneko K, Takase M, Kon N, Fujiwara K, Kurata K (2007) Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ Control Biol 45:189–198

    Article  CAS  Google Scholar 

  • Olle M (2015) Methods to avoid calcium deficiency on greenhouse grown leafy crops. Lap Lambert Academic Publishing, Germany

    Google Scholar 

  • Olle M, Viršilė A (2013) The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agr Food Sci 22:223–234

    Google Scholar 

  • Olschowski S, Geiger EM, Herrmann JV, Sander G, Grüneberg H (2016) Effects of red, blue, and white LED irradiation on root and shoot development of Calibrachoa cuttings in comparison to high pressure sodium lamps. Acta Hortic 1134:245–250

    Article  Google Scholar 

  • Ouzounis T, Razi Parjikolaei B, Fretté X, Rosenqvist E, Ottosen CO (2015a) Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Front Plant Sci 6:19. doi:10.3389/fpls.2015.00019

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouzounis T, Rosenqvist E, Ottosen K (2015b) Spectral effects of artificial light on plant physiology and secondary metabolism: a review. HortScience 50:1128–1135

    CAS  Google Scholar 

  • Ouzounis T, Heuvelink E, Ji Y, Schouten HJ, Visser RGF, Marcelis LFM (2016) Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes. Acta Hortic 1134:251–258

    Article  Google Scholar 

  • Owen WG, Lopez R (2015) End-of-production supplemental lighting with red and blue light-emitting diodes (LEDs) influences red pigmentation of four lettuce varieties. HortScience 50:676–684

    CAS  Google Scholar 

  • Park Y, Runkle ES (2016) Investigation the merit of including far-red light radiation in the production of ornamental seedlings grown under sole-source lighting. Acta Hortic 1134:259–265

    Article  Google Scholar 

  • Park GY, Muneer S, Soundararajan P, Manivnnan A, Jeong BR (2016) Light quality during night interruption affects morphogenesis and flowering in Petunia hybrida, a qualitative long-day plant. Hortic Environ Biote 57:371–377

    Article  CAS  Google Scholar 

  • Patisson PM, Tsao JY, Krames MR (2016) Light emitting diode technology status and directions: opportunities for horticultural lighting. Acta Hortic 1134:413–425

    Article  Google Scholar 

  • Pinho P, Halonen L (2014) Agricultural and horticultural lighting. In: Karileck R, Sun CC, Zissis G, Ma R (eds) Handbook of advanced lighting technology. Springer International Publishing, Switzerland

    Google Scholar 

  • Pinho P, Lukkala R, Särkka L, Teri E, Tahvonen R, Halonen L (2007) Evaluation of lettuce growth under multi-spectral-component supplemental solid state lighting in greenhouse environment. IREE 2:854–680

    Google Scholar 

  • Pinho P, Hytönen T, Flantanen M, Elomaa P, Halonen L (2013) Dynamic control of supplemental lighting intensity in a greenhouse environment. Lighting Res Technol 45:295–304

    Article  Google Scholar 

  • Pinho P, Jokinen K, Halonen L (2016) The influence of the LED light spectrum on the growth and nutrient uptake of hydroponically grown lettuce. Lighting Res Technol. doi:10.1177/1477153516642269

    Google Scholar 

  • Pocock T (2015) Light-emitting diodes and the modulation of specialty crops: light sensing and signaling networks in plants. HortScience 50:1281–1284

    CAS  Google Scholar 

  • Randall WC, Lopez RG (2014) Comparison of supplemental lighting from high pressure sodium lamps and light emitting-diodes during bedding plant seedling production. HortScience 49:589–595

    Google Scholar 

  • Samuolienė G, Urbonavičiūtė A, Duchovskis P, Bliznikas Z, Vitta P, Žukauskas A (2009) Decrease in nitrate concentration in leafy vegetables under a solid-state illuminator. HortScience 44:1857–1860

    Google Scholar 

  • Samuolienė G, Brazaitytė A, Duchovskis P, Viršilė A, Jankauskienė J, Sirtautas R, Novičkovas A, Skalauskienė S, Sakalauskaitė J (2012a) Cultivation of vegetable transplants using solid-state lamps for the short-wavelength supplementary lighting in greenhouses. Acta Hortic 952:885–892

    Article  Google Scholar 

  • Samuolienė G, Brazaitytė A, Sirtautas R, Novičkovas A, Duchovskis P (2012b) The effect of supplementary LED lighting on the antioxidant and nutritional properties of lettuce. Acta Hortic 952:835–841

    Article  Google Scholar 

  • Samuolienė G, Sirtautas R, Brazaitytė A, Viršilė A, Duchovskis P (2012c) Supplementary red-LED lighting and the changes in phytochemical content of two baby leaf lettuce varieties during three seasons. J Food Agric Environ 10:7001–7706

    Google Scholar 

  • Samuolienė G, Sirtautas R, Brazaitytė A, Duchovskis P (2012d) LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem 134:1494–1499

    Article  PubMed  CAS  Google Scholar 

  • Samuolienė G, Brazaitytė A, Sirtautas R, Viršilė A, Sakalauskaitė J, Sakalauskienė S, Duchovskis P (2013) LED illumination affects bioactive compounds in romaine baby leaf lettuce. J Sci Food Agric 93:3286–3291

    Article  PubMed  CAS  Google Scholar 

  • Samuolienė G, Brazaitytė A, ViršilėA Jankauskienė J, Sakalauskienė S, Duchovskis P (2016) Red light-dose or wavelength-dependent photoresponse of antioxidants in herb microgreens. PLoS ONE. doi:10.1371/journal.pone.0163405

    PubMed  PubMed Central  Google Scholar 

  • Schuerger AC, Brown CS (1997) Spectral quality affects disease development of three pathogens on hydroponically grown plants. HortScience 32:96–100

    CAS  PubMed  Google Scholar 

  • Schwend T, Beck M, Prucker D, Peisl S, Memper H (2016) Test of a PAR sensor-based, dynamic regulation of LED lighting in greenhouse cultivation of Helianthus annuus. Eur J Hortic Sci 81:152–156

    Article  Google Scholar 

  • Singh D, Basu C, Meinhardt-Wollweber M, Roth B (2015) LEDs for energy efficient greenhouse lighting. Renew Sust Energ Rev 49:139–147

    Article  CAS  Google Scholar 

  • Snowden MC, Cope KR, Bugbee B (2016) Sensitivity of seven diverse species to blue and green light: interactions with photon flux. PLoS ONE 11(10):e0163121. doi:10.1371/journal.pone.0163121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Son KH, Oh MM (2013) Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988–995

    Google Scholar 

  • Son KH, Oh MM (2015) Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Hortic Environ Biote 56:639–653

    Article  CAS  Google Scholar 

  • Stutte GW, Edney S, Skerritt T (2009) Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 44:79–82

    Google Scholar 

  • Tarakanov I, Yakovleva O, Konovalova I, Paliutina G, Anisimov A (2012) Light-emitting diodes: on the way to combinatorial lighting technologies for basic research and crop production. Acta Hortic 956:171–178

    Article  Google Scholar 

  • Taulavuori K, Hyöky V, Oksanen L, Taulavuori E, Julkunen-Tiitto R (2016) Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light. Environ Exp Bot 121:145–150

    Article  CAS  Google Scholar 

  • Trouwborst G, Oosterkamp J, Hogewoning SW, Harbinson J, van Ieperen W (2010) The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiol Plantarum 138:289–300

    Article  CAS  Google Scholar 

  • van Ieperen W (2016) Plant growth control by light spectrum: fact or fiction? Acta Hortic 1134:19–24

    Article  Google Scholar 

  • van Ieperen W, Savvides A, Fanourakis D (2012) Red and blue light effects during growth on hydraulic and stomatal conductance in leaves of young cucumber plants. Acta Hortic 956:223–230

    Article  Google Scholar 

  • Vänninen I, Pinto DM, Nissinen AI, Johansen NS, Shipp L (2010) In the light of new greenhouse technologies: 1. Plant-mediates effects of artificial lighting on arthropods and tritrophic interactions. An Appl Biol 157:393–414

    Article  Google Scholar 

  • Vaštakaitė V, Viršilė A, Brazaitytė A, Samuoliene G, Jankauskiene J, Sirtautas R, Novičkovas A, Dabašinskas L, Sakalauskienė S, Miliauskienė J, Duchovskis (2015) The effect of blue light dosage on growth and antioxidant properties of microgreens. Sodininkystė ir daržininkystė 34(1–2):25–35

    Google Scholar 

  • Wallace C, Both AJ (2016) Evaluating operating characteristics of light sources for horticultural applications. Acta Hortic 1134:435–443

    Article  Google Scholar 

  • Wanlai Z, Wenke L, Qichang Y (2013) Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light emitting diodes. J Plant Nutr 36:491–490

    Google Scholar 

  • Wargent JJ (2016) UV LEDs in horticulture: from biology to application. Acta Hortic 1134:25–32

    Article  Google Scholar 

  • Wojciechowska R, Długosz-Grochowska O, Kołton A, Župnik M (2015) Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci Hortic 187:80–86

    Article  Google Scholar 

  • Wojciechowska R, Kołton A, Długosz-Grochowska O, Knop E (2016) Nitrate content in Valerianella locusta L. plants is affected by supplemental LED lighting. Sci Hortic 211:179–186

    Article  CAS  Google Scholar 

  • Wollaeger HM, Runkle ES (2013) Growth responses of ornamental annual seedlings under different wavelengths of red light provided by light-emitting diodes. HortScience 48:1478–1483

    Google Scholar 

  • Xin J, Liu H, Song S, Chen R, Sun G (2015) Growth and quality of Chinese kale grown under different LEDs. Agric Sci Technol 16:68–69

    Google Scholar 

  • Yorio NC, Goins GD, Kagie HR, Wheeler RM, Sager JC (2001) Improving spinach, radish and lettuce growth under red light emitting didoes (LEDs) with blue light supplementation. HortScience 36:380–383

    CAS  PubMed  Google Scholar 

  • Žukauskas A, Bliznikas Z, Breivė K, Novičkovas A, Samuolienė G, Urbonavičiūtė A, Brazaitytė A, Jankauskienė J, Duchovskis P (2011) Effect of supplementary pre-harvest LED lighting on the antioxidant properties of lettuce cultivars. Acta Hortic 907:87–90

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akvilė Viršilė .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Viršilė, A., Olle, M., Duchovskis, P. (2017). LED Lighting in Horticulture. In: Dutta Gupta, S. (eds) Light Emitting Diodes for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-5807-3_7

Download citation

Publish with us

Policies and ethics