Skip to main content

Pathophysiology of Ischemic Stroke

  • Chapter
  • First Online:
Translational Research in Stroke

Part of the book series: Translational Medicine Research ((TRAMERE))

Abstract

In this chapter, we summarize the characteristics of pathophysiological changes after ischemic stroke. Ischemic stroke is a rapid occurring and developing disease, which is caused by one or several cerebral artery occlusions. The occlusion could be due to the thrombus or thrombosis. The immediate change after ischemic stroke includes ion balance destroyed such as Na+–K+ pump dysfunction, calcium overload, acid-sensing ion channel opening, and peri-infarct depolarization. The following change is metabolism failure such as decrease of ATP and pH levels, increase of excitotoxicity response, reduced protein synthesis, and disturbed phosphatase activity. After then, free radical release, inflammatory response, apoptosis, necrosis, autophagy, and blood-brain barrier disruption could occur based on the duration and severity of ischemia. During this process, the body defense system could be activated, and angiogenesis, neurogenesis, and oligodendrogenesis could simultaneously be induced. Finally, we also discuss briefly how to manage ischemic brain injury based on the pathophysiological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

3-MA:

3-Methyladenine

AIF:

Apoptosis-inducing factor

AMPARs:

Amino-3-hydroxy-5-methyl-4-isoxanole propionate receptors

ASICs:

Acid-sensing ion channels

Bax:

Bcl-2-associated X protein

BBB:

Blood-brain barrier

Bcl-2:

B-cell lymphoma 2

Bid:

BH3 Interacting-domain death agonist

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

DAPK1:

Death-associated protein kinase 1

DCE-MRI:

Dynamic contrast-enhanced magnetic resonance imaging

Drp1:

Dynamin-related protein 1

EndoG:

Endonuclease G

LC3-II:

Microtubule-associated light chain 3 II protein

LMP:

Lysosomal membrane permeabilization

MMPs:

Matrix metalloproteinases

mPTP:

Mitochondrial permeability transition pore

NCXs:

Na+-Ca2+ exchangers

NMDARs:

N-Methyl-D-aspartate receptors

nNOS:

Neuronal nitric oxide synthase

PARP-1:

Poly(ADP-ribose) polymerases-1

PSD-95:

Postsynaptic density-95 protein

PUMA:

p53-upregulated modulator of apoptosis

ROS:

Reactive oxygen species

Smac:

Second mitochondria-derived activator of caspase

SUMOylation:

Small ubiquitin-like modifier conjugation

tMCAO:

Transient middle cerebral artery occlusion

TNF-α:

Tumor necrosis factor-α

References

  1. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8(4):355–69.

    Article  PubMed  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360.

    Article  PubMed  Google Scholar 

  3. Krishnamurthi RV, Feigin VL, Forouzanfar MH, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health. 2013;1(5):e259–81.

    Article  PubMed  PubMed Central  Google Scholar 

  4. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59(3):467–77.

    Article  PubMed  CAS  Google Scholar 

  5. Panayiotidis MI, Bortner CD, Cidlowski JA. On the mechanism of ionic regulation of apoptosis: would the Na+/K+-ATPase please stand up? Acta Physiol (Oxford, England). 2006;187(1–2):205–15.

    Article  CAS  Google Scholar 

  6. de Souza Wyse AT, Streck EL, Worm P, Wajner A, Ritter F, Netto CA. Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem Res. 2000;25(7):971–5.

    Article  PubMed  Google Scholar 

  7. Huang H, Chen YM, Zhu F, Tang ST, Xiao JD, Li LL, et al. Down-regulated Na(+)/K(+)-ATPase activity in ischemic penumbra after focal cerebral ischemia/reperfusion in rats. Int J Clin Exp Pathol. 2015;8(10):12708–17.

    PubMed  PubMed Central  Google Scholar 

  8. Palmer GC, Palmer SJ, Christie-Pope BC, Callahan AS 3rd, Taylor MD, Eddy LJ. Classification of ischemic-induced damage to Na+, K+-ATPase in gerbil forebrain. Modification by therapeutic agents. Neuropharmacology. 1985;24(6):509–16.

    Article  CAS  PubMed  Google Scholar 

  9. Jamme I, Barbey O, Trouve P, Charlemagne D, Maixent JM, MacKenzie ET, et al. Focal cerebral ischaemia induces a decrease in activity and a shift in ouabain affinity of Na+, K+-ATPase isoforms without modifications in mRNA and protein expression. Brain Res. 1999;819(1–2):132–42.

    Article  CAS  PubMed  Google Scholar 

  10. Castro CC, Pagnussat AS, Moura N, da Cunha MJ, Machado FR, Wyse AT, et al. Coumestrol treatment prevents Na+, K+ −ATPase inhibition and affords histological neuroprotection to male rats receiving cerebral global ischemia. Neurol Res. 2014;36(3):198–206.

    Article  CAS  PubMed  Google Scholar 

  11. Alvarez-Leefmans FJ, Cruzblanca H, Gamino SM, Altamirano J, Nani A, Reuss L. Transmembrane ion movements elicited by sodium pump inhibition in Helix aspersa neurons. J Neurophysiol. 1994;71(5):1787–96.

    CAS  PubMed  Google Scholar 

  12. Martinez-Sanchez M, Striggow F, Schroder UH, Kahlert S, Reymann KG, Reiser G. Na(+) and Ca(2+) homeostasis pathways, cell death and protection after oxygen-glucose-deprivation in organotypic hippocampal slice cultures. Neuroscience. 2004;128(4):729–40.

    Article  CAS  PubMed  Google Scholar 

  13. Muller M, Somjen GG. Na(+) and K(+) concentrations, extra- and intracellular voltages, and the effect of TTX in hypoxic rat hippocampal slices. J Neurophysiol. 2000;83(2):735–45.

    Article  CAS  PubMed  Google Scholar 

  14. Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol. 2010;90(4):439–70.

    Article  CAS  PubMed  Google Scholar 

  15. Luo J, Wang Y, Chen H, Kintner DB, Cramer SW, Gerdts JK, et al. A concerted role of Na+ -K+ -Cl- cotransporter and Na+/Ca2+ exchanger in ischemic damage. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2008;28(4):737–46.

    Article  CAS  Google Scholar 

  16. Rojas H, Colina C, Ramos M, Benaim G, Jaffe EH, Caputo C, et al. Na+ entry via glutamate transporter activates the reverse Na+/Ca2+ exchange and triggers Ca(i)2+-induced Ca2+ release in rat cerebellar type-1 astrocytes. J Neurochem. 2007;100(5):1188–202.

    Article  CAS  PubMed  Google Scholar 

  17. Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature. 2006;439(7079):988–92.

    CAS  PubMed  Google Scholar 

  18. Yu G, Wu F, Wang ES. BQ-869, a novel NMDA receptor antagonist, protects against excitotoxicity and attenuates cerebral ischemic injury in stroke. Int J Clin Exp Pathol. 2015;8(2):1213–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nicholls DG. Mitochondria and calcium signaling. Cell Calcium. 2005;38(3–4):311–7.

    Article  CAS  PubMed  Google Scholar 

  20. Jeon D, Chu K, Jung KH, Kim M, Yoon BW, Lee CJ, et al. Na(+)/Ca(2+) exchanger 2 is neuroprotective by exporting Ca(2+) during a transient focal cerebral ischemia in the mouse. Cell Calcium. 2008;43(5):482–91.

    Article  CAS  PubMed  Google Scholar 

  21. Molinaro P, Sirabella R, Pignataro G, Petrozziello T, Secondo A, Boscia F, et al. Neuronal NCX1 overexpression induces stroke resistance while knockout induces vulnerability via Akt. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2016;36(10):1790–803.

    Article  CAS  Google Scholar 

  22. Morimoto N, Kita S, Shimazawa M, Namimatsu H, Tsuruma K, Hayakawa K, et al. Preferential involvement of Na(+)/Ca(2)(+) exchanger type-1 in the brain damage caused by transient focal cerebral ischemia in mice. Biochem Biophys Res Commun. 2012;429(3–4):186–90.

    Article  CAS  PubMed  Google Scholar 

  23. O'Bryant Z, Vann KT, Xiong ZG. Translational strategies for neuroprotection in ischemic stroke--focusing on acid-sensing ion channel 1a. Transl Stroke Res. 2014;5(1):59–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nature. 1997;386(6621):173–7.

    Article  CAS  PubMed  Google Scholar 

  25. Mari Y, Katnik C, Cuevas J. ASIC1a channels are activated by endogenous protons during ischemia and contribute to synergistic potentiation of intracellular Ca(2+) overload during ischemia and acidosis. Cell Calcium. 2010;48(1):70–82.

    Article  CAS  PubMed  Google Scholar 

  26. Pignataro G, Simon RP, Xiong ZG. Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain: J Neurol. 2007;130(Pt 1):151–8.

    Google Scholar 

  27. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell. 2004;118(6):687–98.

    Article  CAS  PubMed  Google Scholar 

  28. Yang ZJ, Ni X, Carter EL, Kibler K, Martin LJ, Koehler RC. Neuroprotective effect of acid-sensing ion channel inhibitor psalmotoxin-1 after hypoxia-ischemia in newborn piglet striatum. Neurobiol Dis. 2011;43(2):446–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yifeng M, Bin W, Weiqiao Z, Yongming Q, Bing L, Xiaojie L. Neuroprotective effect of sophocarpine against transient focal cerebral ischemia via down-regulation of the acid-sensing ion channel 1 in rats. Brain Res. 2011;1382:245–51.

    Article  PubMed  CAS  Google Scholar 

  30. Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, et al. Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron. 2005;48(4):635–46.

    Article  CAS  PubMed  Google Scholar 

  31. Gao S, Yu Y, Ma ZY, Sun H, Zhang YL, Wang XT, et al. NMDAR-mediated hippocampal neuronal death is exacerbated by activities of ASIC1a. Neurotox Res. 2015;28(2):122–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vonderwalde I, Kovacs-Litman A. Acid-sensing ion channel 1a induces AMPA receptor plasticity: a link between acidotoxicity and excitotoxicity in hippocampal CA1 neurons. J Physiol. 2016;594(4):803–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson MB, Jin K, Minami M, Chen D, Simon RP. Global ischemia induces expression of acid-sensing ion channel 2a in rat brain. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2001;21(6):734–40.

    Article  CAS  Google Scholar 

  34. Miao Y, Zhang W, Lin Y, Lu X, Qiu Y. Neuroprotective effects of ischemic preconditioning on global brain ischemia through up-regulation of acid-sensing ion channel 2a. Int J Mol Sci. 2010;11(1):140–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hossmann KA. Periinfarct depolarizations. Cerebrovasc Brain Metab Rev. 1996;8(3):195–208.

    CAS  PubMed  Google Scholar 

  36. Dohmen C, Sakowitz OW, Fabricius M, Bosche B, Reithmeier T, Ernestus RI, et al. Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neurol. 2008;63(6):720–8.

    Article  PubMed  Google Scholar 

  37. Bosche B, Graf R, Ernestus RI, Dohmen C, Reithmeier T, Brinker G, et al. Recurrent spreading depolarizations after subarachnoid hemorrhage decreases oxygen availability in human cerebral cortex. Ann Neurol. 2010;67(5):607–17.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ayata C, Lauritzen M. Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol Rev. 2015;95(3):953–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kudo K, Zhao L, Nowak TS Jr. Peri-infarct depolarizations during focal ischemia in the awake spontaneously hypertensive rat. Minimizing anesthesia confounds in experimental stroke. Neuroscience. 2016;325:142–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Back T, Ginsberg MD, Dietrich WD, Watson BD. Induction of spreading depression in the ischemic hemisphere following experimental middle cerebral artery occlusion: effect on infarct morphology. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metabolism. 1996;16(2):202–13.

    Article  CAS  Google Scholar 

  41. Nakamura H, Strong AJ, Dohmen C, Sakowitz OW, Vollmar S, Sue M, et al. Spreading depolarizations cycle around and enlarge focal ischaemic brain lesions. Brain J Neurol. 2010;133(Pt 7):1994–2006.

    Article  Google Scholar 

  42. Strong AJ, Anderson PJ, Watts HR, Virley DJ, Lloyd A, Irving EA, et al. Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex. Brain: J Neurol. 2007;130(Pt 4):995–1008.

    Google Scholar 

  43. Risher WC, Ard D, Yuan J, Kirov SA. Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra. J Neurosc: Off J Soc Neurosci. 2010;30(29):9859–68.

    Article  CAS  Google Scholar 

  44. Kamiya T, Jacewicz M, Nowak TS Jr, Pulsinelli WA. Cerebral blood flow thresholds for mRNA synthesis after focal ischemia and the effect of MK-801. Stroke. 2005;36(11):2463–7.

    Article  CAS  PubMed  Google Scholar 

  45. Saito R, Graf R, Hubel K, Fujita T, Rosner G, Heiss WD. Reduction of infarct volume by halothane: effect on cerebral blood flow or perifocal spreading depression-like depolarizations. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 1997;17(8):857–64.

    Article  CAS  Google Scholar 

  46. Takagaki M, Feuerstein D, Kumagai T, Gramer M, Yoshimine T, Graf R. Isoflurane suppresses cortical spreading depolarizations compared to propofol--implications for sedation of neurocritical care patients. Exp Neurol. 2014;252:12–7.

    Article  CAS  PubMed  Google Scholar 

  47. Crumrine RC, LaManna JC. Regional cerebral metabolites, blood flow, plasma volume, and mean transit time in total cerebral ischemia in the rat. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 1991;11(2):272–82.

    Article  CAS  Google Scholar 

  48. Li JY, Ueda H, Seiyama A, Seki J, Konaka K, Yanagida T, et al. Ischemic vasoconstriction and tissue energy metabolism during global cerebral ischemia in gerbils. J Neurotrauma. 2007;24(3):547–58.

    Article  PubMed  Google Scholar 

  49. Taylor JM, Zhu XH, Zhang Y, Chen W. Dynamic correlations between hemodynamic, metabolic, and neuronal responses to acute whole-brain ischemia. NMR Biomed. 2015;28(11):1357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Katsura K, Ekholm A, Asplund B, Siesjo BK. Extracellular pH in the brain during ischemia: relationship to the severity of lactic acidosis. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 1991;11(4):597–9.

    Article  CAS  Google Scholar 

  51. Siesjo BK, Katsura K, Kristian T. Acidosis-related damage. Adv Neurol. 1996;71:209–33. discussion 34–6

    CAS  PubMed  Google Scholar 

  52. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Neural Regen Res. 2014;115:157–88.

    CAS  Google Scholar 

  53. Li V, Wang YT. Molecular mechanisms of NMDA receptor-mediated excitotoxicity: implications for neuroprotective therapeutics for stroke. Neural Regen Res. 2016;11(11):1752–3.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Doeppner TR, Pehlke JR, Kaltwasser B, Schlechter J, Kilic E, Bahr M, et al. The indirect NMDAR antagonist acamprosate induces postischemic neurologic recovery associated with sustained neuroprotection and neuroregeneration. J Cereb Blood Flow Metab. 2015;35(12):2089–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gogas KR. Glutamate-based therapeutic approaches: NR2B receptor antagonists. Curr Opin Pharmacol. 2006;6(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  56. Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med. 2003;9(9):1180–6.

    Article  CAS  PubMed  Google Scholar 

  57. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, et al. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell. 2010;140(2):222–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qiu J, Tan YW, Hagenston AM, Martel MA, Kneisel N, Skehel PA, et al. Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals. Nat Commun. 2013;4:2034.

    PubMed  PubMed Central  Google Scholar 

  59. Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci. 1998;1(5):366–73.

    Article  CAS  PubMed  Google Scholar 

  60. Chaitanya GV, Babu PP. Activation of calpain, cathepsin-b and caspase-3 during transient focal cerebral ischemia in rat model. Neurochem Res. 2008;33(11):2178–86.

    Article  CAS  PubMed  Google Scholar 

  61. Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79(4):1431–568.

    CAS  PubMed  Google Scholar 

  62. Windelborn JA, Lipton P. Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx, arachidonic acid metabolism, and free radical production. J Neurochem. 2008;106(1):56–69.

    Article  CAS  PubMed  Google Scholar 

  63. Shamloo M, Soriano L, Wieloch T, Nikolich K, Urfer R, Oksenberg D. Death-associated protein kinase is activated by dephosphorylation in response to cerebral ischemia. J Biol Chem. 2005;280(51):42290–9.

    Article  CAS  PubMed  Google Scholar 

  64. Dawson VL, Kizushi VM, Huang PL, Snyder SH, Dawson TM. Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci Off J Soc Neurosci. 1996;16(8):2479–87.

    CAS  Google Scholar 

  65. Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM, et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med. 2010;16(12):1439–43.

    Article  CAS  PubMed  Google Scholar 

  66. Christopherson KS, Hillier BJ, Lim WA, Bredt DS. PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem. 1999;274(39):27467–73.

    Article  CAS  PubMed  Google Scholar 

  67. Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science (New York, NY). 1999;284(5421):1845–8.

    Article  CAS  Google Scholar 

  68. Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, et al. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science (New York, NY). 2002, 298(5594):846–50.

    Google Scholar 

  69. Srejic LR, Hutchison WD, Aarts MM. Uncoupling PSD-95 interactions leads to rapid recovery of cortical function after focal stroke. J Cereb Blood Flow Metab : Off J Int Soc Cerebral Blood Flow Metab. 2013;33(12):1937–43.

    Article  CAS  Google Scholar 

  70. Chen Y, Brennan-Minnella AM, Sheth S, El-Benna J, Swanson RA. Tat-NR2B9c prevents excitotoxic neuronal superoxide production. Metab J Cereb Blood Flow Metab: Off J Int Soc Metab J Cereb Blood Flow Metab. 2015;35(5):739–42.

    Article  CAS  Google Scholar 

  71. Hill MD, Martin RH, Mikulis D, Wong JH, Silver FL, Terbrugge KG, et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2012;11(11):942–50.

    Article  CAS  PubMed  Google Scholar 

  72. Weiss JH. Ca permeable AMPA channels in diseases of the nervous system. Front Mol Neurosci. 2011;4:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci U S A. 2005;102(34):12230–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang WM, Liu Z, Liu AJ, Wang YX, Wang HG, An D, et al. The zinc ion chelating agent TPEN attenuates neuronal death/apoptosis caused by hypoxia/ischemia via mediating the pathophysiological Cascade including excitotoxicity, oxidative stress, and inflammation. CNS Neurosci Ther. 2015;21(9):708–17.

    Article  CAS  PubMed  Google Scholar 

  75. Mies G, Ishimaru S, Xie Y, Seo K, Hossmann KA. Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 1991;11(5):753–61.

    Article  CAS  Google Scholar 

  76. Xie Y, Mies G, Hossmann KA. Ischemic threshold of brain protein synthesis after unilateral carotid artery occlusion in gerbils. Stroke. 1989;20(5):620–6.

    Article  CAS  PubMed  Google Scholar 

  77. Bodsch W, Barbier A, Oehmichen M, Grosse Ophoff B, Hossmann KA. Recovery of monkey brain after prolonged ischemia. II. Protein synthesis and morphological alterations. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 1986;6(1):22–33.

    Article  CAS  Google Scholar 

  78. Thilmann R, Xie Y, Kleihues P, Kiessling M. Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol. 1986;71(1–2):88–93.

    Article  CAS  PubMed  Google Scholar 

  79. Hackett MJ, Smith SE, Caine S, Nichol H, George GN, Pickering IJ, et al. Novel bio-spectroscopic imaging reveals disturbed protein homeostasis and thiol redox with protein aggregation prior to hippocampal CA1 pyramidal neuron death induced by global brain ischemia in the rat. Free Radic Biol Med. 2015;89:806–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hermann DM, Kilic E, Hata R, Hossmann KA, Mies G. Relationship between metabolic dysfunctions, gene responses and delayed cell death after mild focal cerebral ischemia in mice. Neuroscience. 2001;104(4):947–55.

    Article  CAS  PubMed  Google Scholar 

  81. DeGracia DJ, Hu BR. Irreversible translation arrest in the reperfused brain. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2007;27(5):875–93.

    Article  CAS  Google Scholar 

  82. Ayuso MI, Martinez-Alonso E, Regidor I, Alcazar A. Stress granule induction after brain ischemia is independent of eukaryotic translation initiation factor (eIF) 2alpha phosphorylation and is correlated with a decrease in eIF4B and eIF4E proteins. J Biol Chem. 2016;291(53):27252–64.

    Article  CAS  PubMed  Google Scholar 

  83. Iwabuchi M, Sheng H, Thompson JW, Wang L, Dubois LG, Gooden D, et al. Characterization of the ubiquitin-modified proteome regulated by transient forebrain ischemia. J Cereb Blood Flow Metab: Off J Intl Soc Cereb Blood Flow Metab. 2014;34(3):425–32.

    Article  CAS  Google Scholar 

  84. Vosler PS, Gao Y, Brennan CS, Yanagiya A, Gan Y, Cao G, et al. Ischemia-induced calpain activation causes eukaryotic (translation) initiation factor 4G1 (eIF4GI) degradation, protein synthesis inhibition, and neuronal death. Proc Natl Acad Sci U S A. 2011;108(44):18102–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang F, Liu CL, Hu BR. Irreversible aggregation of protein synthesis machinery after focal brain ischemia. J Neurochem. 2006;98(1):102–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hochrainer K, Jackman K, Anrather J, Iadecola C. Reperfusion rather than ischemia drives the formation of ubiquitin aggregates after middle cerebral artery occlusion. Stroke. 2012;43(8):2229–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Datwyler AL, Lattig-Tunnemann G, Yang W, Paschen W, Lee SL, Dirnagl U, et al. SUMO2/3 conjugation is an endogenous neuroprotective mechanism. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2011;31(11):2152–9.

    Article  CAS  Google Scholar 

  88. Cimarosti H, Lindberg C, Bomholt SF, Ronn LC, Henley JM. Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology. 2008;54(2):280–9.

    Article  CAS  PubMed  Google Scholar 

  89. Yang W, Sheng H, Warner DS, Paschen W. Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2008;28(5):892–6.

    Article  CAS  Google Scholar 

  90. Yang W, Sheng H, Warner DS, Paschen W. Transient global cerebral ischemia induces a massive increase in protein sumoylation. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2008;28(2):269–79.

    Article  CAS  Google Scholar 

  91. Lee YJ, Mou Y, Maric D, Klimanis D, Auh S, Hallenbeck JM. Elevated global SUMOylation in Ubc9 transgenic mice protects their brains against focal cerebral ischemic damage. PLoS One. 2011;6(10):e25852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang L, Liu X, Sheng H, Liu S, Li Y, Zhao JQ, et al. Neuron-specific SUMO knockdown suppresses global gene expression response and worsens functional outcome after transient forebrain ischemia in mice. Neuroscience. 2017;343:190–212.

    Article  CAS  PubMed  Google Scholar 

  93. Bright R, Mochly-Rosen D. The role of protein kinase C in cerebral ischemic and reperfusion injury. Stroke. 2005;36(12):2781–90.

    Article  CAS  PubMed  Google Scholar 

  94. Churn SB, Taft WC, Billingsley MS, Sankaran B, DeLorenzo RJ. Global forebrain ischemia induces a posttranslational modification of multifunctional calcium- and calmodulin-dependent kinase II. J Neurochem. 1992;59(4):1221–32.

    Article  CAS  PubMed  Google Scholar 

  95. Li J, McCullough LD. Effects of AMP-activated protein kinase in cerebral ischemia. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2010;30(3):480–92.

    Article  CAS  Google Scholar 

  96. Nozaki K, Nishimura M, Hashimoto N. Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol. 2001;23(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  97. Perez-Pinzon MA, Dave KR, Raval AP. Role of reactive oxygen species and protein kinase C in ischemic tolerance in the brain. Antioxid Redox Signal. 2005;7(9–10):1150–7.

    Article  CAS  PubMed  Google Scholar 

  98. Zhao EY, Efendizade A, Cai L, Ding Y. The role of Akt (protein kinase B) and protein kinase C in ischemia-reperfusion injury. Neurol Res. 2016;38(4):301–8.

    Article  CAS  PubMed  Google Scholar 

  99. Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke: Off J Int Stroke Soc. 2009;4(6):461–70.

    Article  CAS  Google Scholar 

  100. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal. 2011;14(8):1505–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ginsberg MD. The new language of cerebral ischemia. AJNR Am J Neuroradiol. 1997;18(8):1435–45.

    CAS  PubMed  Google Scholar 

  102. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(5):e331–9.

    Article  PubMed  Google Scholar 

  103. Chen W, Sun Y, Liu K, Sun X. Autophagy: a double-edged sword for neuronal survival after cerebral ischemia. Neural Regen Res. 2014;9(12):1210–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Puyal J, Ginet V, Clarke PG. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol. 2013;105:24–48.

    Article  PubMed  Google Scholar 

  105. Rami A, Kogel D. Apoptosis meets autophagy-like cell death in the ischemic penumbra: two sides of the same coin? Autophagy. 2008;4(4):422–6.

    Article  CAS  PubMed  Google Scholar 

  106. Chan PH. Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem Res. 2004;29(11):1943–9.

    Article  CAS  PubMed  Google Scholar 

  107. Martin NA, Bonner H, Elkjaer ML, D'Orsi B, Chen G, Konig HG, et al. BID mediates oxygen-glucose deprivation-induced neuronal injury in Organotypic hippocampal slice cultures and modulates tissue inflammation in a transient focal cerebral ischemia model without changing lesion volume. Front Cell Neurosci. 2016;10:14.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Plesnila N, Zinkel S, Le DA, Amin-Hanjani S, Wu Y, Qiu J, et al. BID mediates neuronal cell death after oxygen/ glucose deprivation and focal cerebral ischemia. Proc Natl Acad Sci U S A. 2001;98(26):15318–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M, et al. Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci: Off J Soc for Neurosci. 2005;25(44):10262–72.

    Article  CAS  Google Scholar 

  110. Wang Y, An R, Umanah GK, Park H, Nambiar K, Eacker SM, et al. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science (New York). 2016;354(6308)

    Google Scholar 

  111. Nielsen M, Lambertsen KL, Clausen BH, Meldgaard M, Diemer NH, Zimmer J, et al. Nuclear translocation of endonuclease G in degenerating neurons after permanent middle cerebral artery occlusion in mice. Exp Brain Res. 2009;194(1):17–27.

    Article  PubMed  Google Scholar 

  112. Lee BI, Lee DJ, Cho KJ, Kim GW. Early nuclear translocation of endonuclease G and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Neurosci Lett. 2005;386(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  113. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature. 2001;412(6842):95–9.

    Article  CAS  PubMed  Google Scholar 

  114. Galluzzi L, Vanden Berghe T, Vanlangenakker N, Buettner S, Eisenberg T, Vandenabeele P, et al. Programmed necrosis from molecules to health and disease. Int Rev Cell Mol Biol. 2011;289:1–35.

    Article  CAS  PubMed  Google Scholar 

  115. Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P. Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med. 2008;8(3):207–20.

    Article  CAS  PubMed  Google Scholar 

  116. Pacher P, Szabo C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am J Pathol. 2008;173(1):2–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA. Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Creb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 1997;17(11):1143–51.

    Article  CAS  Google Scholar 

  118. Kaundal RK, Shah KK, Sharma SS. Neuroprotective effects of NU1025, a PARP inhibitor in cerebral ischemia are mediated through reduction in NAD depletion and DNA fragmentation. Life Sci. 2006;79(24):2293–302.

    Article  CAS  PubMed  Google Scholar 

  119. Yamashima T, Tonchev AB, Tsukada T, Saido TC, Imajoh-Ohmi S, Momoi T, et al. Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. Hippocampus. 2003;13(7):791–800.

    Article  CAS  PubMed  Google Scholar 

  120. Sahara S, Yamashima T. Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Biochem Biophys Res Commun. 2010;393(4):806–11.

    Article  CAS  PubMed  Google Scholar 

  121. Villalpando Rodriguez GE, Torriglia A. Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. Biochim Biophys Acta. 2013;1833(10):2244–53.

    Article  CAS  PubMed  Google Scholar 

  122. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 2012;149(7):1536–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1(2):112–9.

    Article  CAS  PubMed  Google Scholar 

  124. Xu X, Chua KW, Chua CC, Liu CF, Hamdy RC, Chua BH. Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury. Brain Res. 2010;1355:189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vieira M, Fernandes J, Carreto L, Anuncibay-Soto B, Santos M, Han J, et al. Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous RIP3. Neurobiol Dis. 2014;68:26–36.

    Article  CAS  PubMed  Google Scholar 

  126. Guo X, Sesaki H, Qi X. Drp1 stabilizes p53 on the mitochondria to trigger necrosis under oxidative stress conditions in vitro and in vivo. Biochem J. 2014;461(1):137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, et al. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci: Off J Soc Neurosci. 1995;15(2):1001–11.

    CAS  Google Scholar 

  128. Gu Z, Sun Y, Liu K, Wang F, Zhang T, Li Q, et al. The role of autophagic and lysosomal pathways in ischemic brain injury. Neural Regen Res. 2013;8(23):2117–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy. 2008;4(6):762–9.

    Article  CAS  PubMed  Google Scholar 

  130. Tian F, Deguchi K, Yamashita T, Ohta Y, Morimoto N, Shang J, et al. In vivo imaging of autophagy in a mouse stroke model. Autophagy. 2010;6(8):1107–14.

    Article  PubMed  Google Scholar 

  131. Puyal J, Vaslin A, Mottier V, Clarke PG. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol. 2009;66(3):378–89.

    Article  CAS  PubMed  Google Scholar 

  132. Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis. 2008;32(3):329–39.

    Article  CAS  PubMed  Google Scholar 

  133. Gao L, Jiang T, Guo J, Liu Y, Cui G, Gu L, et al. Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One. 2012;7(9):e46092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sheng R, Zhang LS, Han R, Liu XQ, Gao B, Qin ZH. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy. 2010;6(4):482–94.

    Article  CAS  PubMed  Google Scholar 

  135. Wang Y, Wang W, Li D, Li M, Wang P, Wen J, et al. IGF-1 alleviates NMDA-induced excitotoxicity in cultured hippocampal neurons against autophagy via the NR2B/PI3K-AKT-mTOR pathway. J Cell Physiol. 2014;229(11):1618–29.

    Article  CAS  PubMed  Google Scholar 

  136. Sadasivan S, Zhang Z, Larner SF, Liu MC, Zheng W, Kobeissy FH, et al. Acute NMDA toxicity in cultured rat cerebellar granule neurons is accompanied by autophagy induction and late onset autophagic cell death phenotype. BMC Neurosci. 2010;11:21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Borsello T, Croquelois K, Hornung JP, Clarke PG. N-methyl-d-aspartate-triggered neuronal death in organotypic hippocampal cultures is endocytic, autophagic and mediated by the c-Jun N-terminal kinase pathway. Eur J Neurosci. 2003;18(3):473–85.

    Article  PubMed  Google Scholar 

  138. Ginet V, Spiehlmann A, Rummel C, Rudinskiy N, Grishchuk Y, Luthi-Carter R, et al. Involvement of autophagy in hypoxic-excitotoxic neuronal death. Autophagy. 2014;10(5):846–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1):a020412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Belayev L, Busto R, Zhao W, Ginsberg MD. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res. 1996;739(1–2):88–96.

    Article  CAS  PubMed  Google Scholar 

  141. Huang ZG, Xue D, Preston E, Karbalai H, Buchan AM. Biphasic opening of the blood-brain barrier following transient focal ischemia: effects of hypothermia. Can J Neurol Sci J Can Sci Neurol. 1999;26(4):298–304.

    Article  CAS  Google Scholar 

  142. Kuroiwa T, Ting P, Martinez H, Klatzo I. The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol. 1985;68(2):122–9.

    Article  CAS  PubMed  Google Scholar 

  143. Abo-Ramadan U, Durukan A, Pitkonen M, Marinkovic I, Tatlisumak E, Pedrono E, et al. Post-ischemic leakiness of the blood-brain barrier: a quantitative and systematic assessment by Patlak plots. Exp Neurol. 2009;219(1):328–33.

    Article  CAS  PubMed  Google Scholar 

  144. Strbian D, Durukan A, Pitkonen M, Marinkovic I, Tatlisumak E, Pedrono E, et al. The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience. 2008;153(1):175–81.

    Article  CAS  PubMed  Google Scholar 

  145. Merali Z, Huang K, Mikulis D, Silver F, Kassner A. Evolution of blood-brain-barrier permeability after acute ischemic stroke. PLoS One. 2017;12(2):e0171558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Krueger M, Bechmann I, Immig K, Reichenbach A, Hartig W, Michalski D. Blood-brain barrier breakdown involves four distinct stages of vascular damage in various models of experimental focal cerebral ischemia. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2015;35(2):292–303.

    Article  CAS  Google Scholar 

  147. Liu J, Jin X, Liu KJ, Liu W. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J Neurosc: Off J Soc Neurosci. 2012;32(9):3044–57.

    Article  CAS  Google Scholar 

  148. Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LL Jr, del Zoppo GJ. Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke. 2004;35(4):998–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, et al. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron. 2014;82(3):603–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kimelberg HK. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia. 2005;50(4):389–97.

    Article  PubMed  Google Scholar 

  151. Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557–61.

    Article  CAS  PubMed  Google Scholar 

  152. Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO. Astrocytes and pericytes differentially modulate blood-brain barrier characteristics during development and hypoxic insult. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2011;31(2):693–705.

    Article  Google Scholar 

  153. Gonul E, Duz B, Kahraman S, Kayali H, Kubar A, Timurkaynak E. Early pericyte response to brain hypoxia in cats: an ultrastructural study. Microvasc Res. 2002;64(1):116–9.

    Article  PubMed  Google Scholar 

  154. Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol. 2013;4:32.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2000;20(12):1681–9.

    Article  CAS  Google Scholar 

  156. Cui J, Chen S, Zhang C, Meng F, Wu W, Hu R, et al. Inhibition of MMP-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia. Mol Neurodegener. 2012;7:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Valable S, Montaner J, Bellail A, Berezowski V, Brillault J, Cecchelli R, et al. VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: both effects decreased by Ang-1. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2005;25(11):1491–504.

    Article  CAS  Google Scholar 

  158. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest. 2000;106(7):829–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Khatri R, McKinney AM, Swenson B, Janardhan V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology. 2012;79(13 Suppl 1):S52–7.

    Article  PubMed  Google Scholar 

  160. Vidale S, Consoli A, Arnaboldi M, Consoli D. Postischemic inflammation in acute stroke. J Clin Neurol (Seoul, Korea). 2017;13(1):1–9.

    Article  Google Scholar 

  161. Elkind MS. Inflammatory mechanisms of stroke. Stroke. 2010;41(10 Suppl):S3–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jin R, Liu L, Zhang S, Nanda A, Li G. Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res. 2013;6(5):834–51.

    Article  PubMed  Google Scholar 

  163. Dziedzic T. Systemic inflammation as a therapeutic target in acute ischemic stroke. Expert Rev Neurother. 2015;15(5):523–31.

    Article  CAS  PubMed  Google Scholar 

  164. Siniscalchi A, Iannacchero R, Anticoli S, Pezzella FR, De Sarro G, Gallelli L. Anti-inflammatory strategies in stroke: a potential therapeutic target. Curr Vasc Pharmacol. 2016;14(1):98–105.

    Article  CAS  PubMed  Google Scholar 

  165. Lambertsen KL, Biber K, Finsen B. Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2012;32(9):1677–98.

    Article  CAS  Google Scholar 

  166. Mirabelli-Badenier M, Braunersreuther V, Viviani GL, Dallegri F, Quercioli A, Veneselli E, et al. CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke. Thromb Haemost. 2011;105(3):409–20.

    Article  CAS  PubMed  Google Scholar 

  167. Kim JS. Cytokines and adhesion molecules in stroke and related diseases. J Neurol Sci. 1996;137(2):69–78.

    Article  CAS  PubMed  Google Scholar 

  168. Ma Y, Wang J, Wang Y, Yang GY. The biphasic function of microglia in ischemic stroke. Prog Neurobiol. 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Yuan Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Yang, GY. (2017). Pathophysiology of Ischemic Stroke. In: Lapchak, P., Yang, GY. (eds) Translational Research in Stroke. Translational Medicine Research. Springer, Singapore. https://doi.org/10.1007/978-981-10-5804-2_4

Download citation

Publish with us

Policies and ethics