Skip to main content

The Role of TMS for Predicting Motor Recovery and Outcomes After Stroke

  • Chapter
  • First Online:
Translational Research in Stroke

Part of the book series: Translational Medicine Research ((TRAMERE))

Abstract

Transcranial magnetic stimulation (TMS) is a safe, non-invasive technique for studying the human motor system. It can be used to evaluate primary motor cortex (M1) function after stroke, by stimulating the ipsilesional M1 and recording motor-evoked potentials (MEPs) from the paretic limbs. In this chapter, we first outline the measures of M1, intracortical and interhemispheric function that can be made with TMS. The presence or absence of MEPs is the simplest and most reliable measure that can be made with TMS. In general, patients in whom TMS can elicit MEPs from the paretic limbs make a better motor recovery and experience better functional outcomes than those patients without MEPs. We provide an overview of recent research showing that MEP status is a particularly useful biomarker for patients with initially severe motor impairment. The limitations and potential benefits of MEP status as a biomarker for patient selection in stroke rehabilitation trials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AMT:

Active motor threshold

CST:

Corticospinal tract

ECR:

Extensor carpi radialis

EMG:

Electromyography

FM-UE:

Fugl-Meyer Upper Extremity Scale

GABA:

Gamma-aminobutyric acid

IHI:

Interhemispheric inhibition

iSP:

Ipsilateral silent period

M1:

Primary motor cortex

MEP:

Motor-evoked potential

MRC:

Medical Research Council

MRI:

Magnetic resonance imaging

MSO:

Maximum stimulator output

NPV:

Negative predictive value

PLIC:

Posterior limb of the internal capsule

PPV:

Positive predictive value

RMT:

Resting motor threshold

SAFE:

Shoulder abduction finger extension

SICI:

Short-latency intracortical inhibition

SP:

Silent period

TMS:

Transcranial magnetic stimulation

References

  1. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106–7.

    Article  CAS  PubMed  Google Scholar 

  2. Kaneko K, Kawai S, Fuchigami Y, Morita H, Ofuji A. The effect of current direction induced by transcranial magnetic stimulation on the corticospinal excitability in human brain. Electroencephalogr Clin Neurophysiol. 1996;101(6):478–82.

    CAS  PubMed  Google Scholar 

  3. Pascual-Leone A. Handbook of transcranial magnetic stimulation. London: Arnold; New York: Oxford University Press; 2002.

    Google Scholar 

  4. Amassian VE, Cracco RQ. Human cerebral cortical responses to contralateral transcranial stimulation. Neurosurgery. 1987;20(1):148–55.

    CAS  PubMed  Google Scholar 

  5. Di Lazzaro V, Ziemann U, Lemon R. State of the art: physiology of transcranial motor cortex stimulation. Brain Stimul. 2008;1(4):345–62.

    Article  PubMed  Google Scholar 

  6. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071–107.

    Article  CAS  PubMed  Google Scholar 

  7. Huynh W, Vucic S, Krishnan AV, Lin CS, Hornberger M, Kiernan MC. Longitudinal plasticity across the neural axis in acute stroke. Neurorehabil Neural Repair. 2013;27(3):219–29.

    Article  PubMed  Google Scholar 

  8. Devanne H, Lavoie BA, Capaday C. Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res. 1997;114(2):329–38.

    Article  CAS  PubMed  Google Scholar 

  9. Wilson SA, Thickbroom GW, Mastaglia FL. Topography of excitatory and inhibitory muscle responses evoked by transcranial magnetic stimulation in the human motor cortex. Neurosci Lett. 1993;154(1–2):52–6.

    Article  CAS  PubMed  Google Scholar 

  10. Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke. 2000;31(6):1210–6.

    Article  CAS  PubMed  Google Scholar 

  11. van de Ruit M, Perenboom MJ, Grey MJ. TMS brain mapping in less than two minutes. Brain Stimul. 2015;8(2):231–9.

    Article  PubMed  Google Scholar 

  12. Inghilleri M, Berardelli A, Cruccu G, Manfredi M. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol. 1993;466:521–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. van Kuijk AA, Pasman JW, Geurts AC, Hendricks HT. How salient is the silent period? The role of the silent period in the prognosis of upper extremity motor recovery after severe stroke. J Clin Neurophysiol. 2005;22(1):10–24.

    Article  PubMed  Google Scholar 

  14. Jung P, Ziemann U. Differences of the ipsilateral silent period in small hand muscles. Muscle Nerve. 2006;34(4):431–6.

    Article  PubMed  Google Scholar 

  15. Harris-Love ML, Chan E, Dromerick AW, Cohen LG. Neural substrates of motor recovery in severely impaired stroke patients with hand paralysis. Neurorehabil Neural Repair. 2016;30(4):328–38.

    Article  PubMed  Google Scholar 

  16. Stinear CM, Barber PA, Coxon JP, Fleming MK, Byblow WD. Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain. 2008;131(Pt 5):1381–90.

    Article  PubMed  Google Scholar 

  17. Rothwell JC, Day BL, Thompson PD, Kujirai T. Short latency intracortical inhibition: one of the most popular tools in human motor neurophysiology. J Physiol. 2009;587(Pt 1):11–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liepert J, Hamzei F, Weiller C. Lesion-induced and training-induced brain reorganization. Restor Neurol Neurosci. 2004;22(3–5):269–77.

    CAS  PubMed  Google Scholar 

  19. Duque J, Hummel F, Celnik P, Murase N, Mazzocchio R, Cohen LG. Transcallosal inhibition in chronic subcortical stroke. NeuroImage. 2005;28(4):940–6.

    Article  PubMed  Google Scholar 

  20. Talelli P, Waddingham W, Ewas A, Rothwell JC, Ward NS. The effect of age on task-related modulation of interhemispheric balance. Exp Brain Res. 2008;186(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  21. Koch G, Oliveri M, Cheeran B, Ruge D, Lo Gerfo E, Salerno S, et al. Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect. Brain. 2008;131(Pt 12):3147–55.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Talelli P, Greenwood RJ, Rothwell JC. Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clin Neurophysiol. 2006;117(8):1641–59.

    Article  CAS  PubMed  Google Scholar 

  23. Perez MA, Cohen LG. The corticospinal system and transcranial magnetic stimulation in stroke. Top Stroke Rehabil. 2009;16(4):254–69.

    Article  PubMed  PubMed Central  Google Scholar 

  24. McDonnell MN, Stinear CM. TMS measures of motor cortex function after stroke: A meta-analysis. Brain Stimul. 2017;10(4):721–734.

    Google Scholar 

  25. Schambra HM, Ogden RT, Martinez-Hernandez IE, Lin X, Chang YB, Rahman A, et al. The reliability of repeated TMS measures in older adults and in patients with subacute and chronic stroke. Front Cell Neurosci. 2015;9:335.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Koski L, Lin JC, Wu AD, Winstein CJ. Reliability of intracortical and corticomotor excitability estimates obtained from the upper extremities in chronic stroke. Neurosci Res. 2007;58(1):19–31.

    Article  PubMed  Google Scholar 

  27. Liu H, Au-Yeung SS. Reliability of transcranial magnetic stimulation induced corticomotor excitability measurements for a hand muscle in healthy and chronic stroke subjects. J Neurol Sci. 2014;341(1–2):105–9.

    Article  PubMed  Google Scholar 

  28. Mooney RA, Cirillo J, Byblow WD. GABA and primary motor cortex inhibition in young and older adults: a multimodal reliability study. J Neurophysiol. 2017;118(1):425–433.

    Google Scholar 

  29. Cirillo J, Byblow WD. Threshold tracking primary motor cortex inhibition: the influence of current direction. Eur J Neurosci. 2016;44(8):2614–21.

    Article  PubMed  Google Scholar 

  30. Murase N, Cengiz B, Rothwell JC. Inter-individual variation in the after-effect of paired associative stimulation can be predicted from short-interval intracortical inhibition with the threshold tracking method. Brain Stimul. 2015;8(1):105–13.

    Article  PubMed  Google Scholar 

  31. Ruber T, Schlaug G, Lindenberg R. Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke. Neurology. 2012;79(6):515–22.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hoonhorst MH, Kollen BJ, van den Berg PS, Emmelot CH, Kwakkel G. How reproducible are transcranial magnetic stimulation-induced MEPs in subacute stroke? J Clin Neurophysiol. 2014;31(6):556–62.

    Article  PubMed  Google Scholar 

  33. Hendricks HT, Zwarts MJ, Plat EF, van Limbeek J. Systematic review for the early prediction of motor and functional outcome after stroke by using motor-evoked potentials. Arch Phys Med Rehabil. 2002;83(9):1303–8.

    Article  PubMed  Google Scholar 

  34. Bembenek JP, Kurczych K, Karli Nski M, Czlonkowska A. The prognostic value of motor-evoked potentials in motor recovery and functional outcome after stroke – a systematic review of the literature. Funct Neurol. 2012;27(2):79–84.

    PubMed  PubMed Central  Google Scholar 

  35. Nijland R, van Wegen E, Verbunt J, van Wijk R, van Kordelaar J, Kwakkel G. A comparison of two validated tests for upper limb function after stroke: the Wolf Motor Function Test and the Action Research Arm Test. J Rehabil Med. 2010;42(7):694–6.

    Article  PubMed  Google Scholar 

  36. Hendricks HT, Pasman JW, van Limbeek J, Zwarts MJ. Motor evoked potentials in predicting recovery from upper extremity paralysis after acute stroke. Cerebrovasc Dis. 2003;16(3):265–71.

    Article  PubMed  Google Scholar 

  37. Escudero JV, Sancho J, Bautista D, Escudero M, Lopez-Trigo J. Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke. 1998;29(9):1854–9.

    Article  CAS  PubMed  Google Scholar 

  38. Pizzi A, Carrai R, Falsini C, Martini M, Verdesca S, Grippo A. Prognostic value of motor evoked potentials in motor function recovery of upper limb after stroke. J Rehabil Med. 2009;41(8):654–60.

    Article  PubMed  Google Scholar 

  39. Heald A, Bates D, Cartlidge NE, French JM, Miller S. Longitudinal study of central motor conduction time following stroke. 2. Central motor conduction measured within 72 h after stroke as a predictor of functional outcome at 12 months. Brain. 1993;116(Pt 6):1371–85.

    Article  PubMed  Google Scholar 

  40. Lindenberg R, Zhu LL, Ruber T, Schlaug G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum Brain Mapp. 2012;33(5):1040–51.

    Article  PubMed  Google Scholar 

  41. Schwerin S, Dewald JP, Haztl M, Jovanovich S, Nickeas M, MacKinnon C. Ipsilateral versus contralateral cortical motor projections to a shoulder adductor in chronic hemiparetic stroke: implications for the expression of arm synergies. Exp Brain Res. 2008;185(3):509–19.

    Article  PubMed  Google Scholar 

  42. Stinear CM. Prediction of recovery of motor function after stroke. Lancet Neurol. 2010;9(12):1228–32.

    Article  PubMed  Google Scholar 

  43. Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain. 2012;135(Pt 8):2527–35.

    Article  PubMed  Google Scholar 

  44. Stinear CM, Byblow WD, Ackerley SJ, Barber PA, Smith MC. Predicting recovery potential for individual stroke patients increases rehabilitation efficiency. Stroke. 2017;48(4):1011–9.

    Article  PubMed  Google Scholar 

  45. Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2012;123(5):858–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hendricks HT, Pasman JW, van Limbeek J, Zwarts MJ. Motor evoked potentials of the lower extremity in predicting motor recovery and ambulation after stroke: a cohort study. Arch Phys Med Rehabil. 2003;84(9):1373–9.

    Article  PubMed  Google Scholar 

  47. Chang MC, Do KH, Chun MH. Prediction of lower limb motor outcomes based on transcranial magnetic stimulation findings in patients with an infarct of the anterior cerebral artery. Somatosens Mot Res. 2015;32(4):249–53.

    Article  PubMed  Google Scholar 

  48. Jang SH, Chang CH, Lee J, Kim CS, Seo JP, Yeo SS. Functional role of the corticoreticular pathway in chronic stroke patients. Stroke. 2013;44(4):1099–104.

    Article  PubMed  Google Scholar 

  49. Fugl Meyer AR, Jaasko L, Leyman I. The post stroke hemiplegic patient. I. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.

    CAS  PubMed  Google Scholar 

  50. Brunnstrom S. Movement therapy in hemiplegia: a neurophysiological approach. New York: Harper & Row; 1970.

    Google Scholar 

  51. Duncan PW, Goldstein LB, Matchar D, Divine GW, Feussner J. Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke. 1992;23(8):1084–9.

    Article  CAS  PubMed  Google Scholar 

  52. Zeiler SR, Krakauer JW. The interaction between training and plasticity in the poststroke brain. Curr Opin Neurol. 2013;26(6):609–16.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Prabhakaran S, Zarahn E, Riley C, Speizer A, Chong JY, Lazar RM, et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair. 2008;22(1):64–71.

    Article  PubMed  Google Scholar 

  54. Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair. 2015;29(7):614–22.

    Article  PubMed  Google Scholar 

  55. Byblow WD, Stinear CM, Barber PA, Petoe MA, Ackerley SJ. Proportional recovery after stroke depends on corticomotor integrity. Ann Neurol. 2015;78(6):848–59.

    Article  PubMed  Google Scholar 

  56. Feng W, Wang J, Chhatbar PY, Doughty C, Landsittel D, Lioutas VA, et al. Corticospinal tract lesion load: an imaging biomarker for stroke motor outcomes. Ann Neurol. 2015;78(6):860–70.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Smith MC, Byblow WD, Barber PA, Stinear CM. Proportional recovery from lower limb motor impairment after stroke. Stroke. 2017;48(5):1400–3.

    Article  PubMed  Google Scholar 

  58. Stinear CM, Byblow WD, Ackerley SJ, Smith MC, Borges VM, Barber PA. Proportional motor recovery after stroke: implications for trial design. Stroke. 2017;48(3):795–8.

    Article  PubMed  Google Scholar 

  59. Buch ER, Rizk S, Nicolo P, Cohen LG, Schnider A, Guggisberg AG. Predicting motor improvement after stroke with clinical assessment and diffusion tensor imaging. Neurology. 2016;86(20):1924–5.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zarahn E, Alon L, Ryan SL, Lazar RM, Vry MS, Weiller C, et al. Prediction of motor recovery using initial impairment and fMRI 48 h poststroke. Cereb Cortex. 2011;21(12):2712–21.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Krakauer JW, Marshall RS. The proportional recovery rule for stroke revisited. Ann Neurol. 2015;78(6):845–7.

    Article  CAS  PubMed  Google Scholar 

  62. Lazar RM, Minzer B, Antoniello D, Festa JR, Krakauer JW, Marshall RS. Improvement in aphasia scores after stroke is well predicted by initial severity. Stroke. 2010;41(7):1485–8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain. 2007;130(Pt 1):170–80.

    PubMed  Google Scholar 

  64. Wittenberg GF, Richards LG, Jones-Lush LM, Roys SR, Gullapalli RP, Yang S, et al. Predictors and brain connectivity changes associated with arm motor function improvement from intensive practice in chronic stroke. F1000Research. 2016;5:2119.

    Article  PubMed  Google Scholar 

  65. Nouri S, Cramer SC. Anatomy and physiology predict response to motor cortex stimulation after stroke. Neurology. 2011;77(11):1076–83.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Delvaux V, Alagona G, Gerard P, De Pasqua V, Pennisi G, de Noordhout AM. Post-stroke reorganization of hand motor area: a 1-year prospective follow-up with focal transcranial magnetic stimulation. Clin Neurophysiol. 2003;114(7):1217–25.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathy M. Stinear .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stinear, C.M., Byblow, W.D. (2017). The Role of TMS for Predicting Motor Recovery and Outcomes After Stroke. In: Lapchak, P., Yang, GY. (eds) Translational Research in Stroke. Translational Medicine Research. Springer, Singapore. https://doi.org/10.1007/978-981-10-5804-2_25

Download citation

Publish with us

Policies and ethics