Skip to main content

Animal Models for Ischemic Stroke

  • Chapter
  • First Online:
Book cover Translational Research in Stroke

Part of the book series: Translational Medicine Research ((TRAMERE))

Abstract

Developing reliable and reproducible animal model is of great importance in the therapeutic research of ischemic stroke. The location and volume of injury are varied in different animal models. Researchers choose different animal models according to the research purposes. In this chapter, we summarized the system of ischemic stroke models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2-VO:

Two-vessel occlusion

4-VO:

Four-vessel occlusion

CBF:

Cerebral blood flow

CCA:

Common carotid artery

ECA:

External carotid artery

EPCs:

Endothelial progenitor cells

ICA:

Internal carotid artery

MCAO:

Middle cerebral artery occlusion

mNSS:

Modified neurological severity score

PPA:

Pterygopalatine artery

rt-PA:

Recombinant tissue plasminogen activator

References

  1. Li Q, Tang G, Xue S, He X, Miao P, Li Y, et al. Silica-coated superparamagnetic iron oxide nanoparticles targeting of EPCs in ischemic brain injury. Biomaterials. 2013;34(21):4982–92.

    Article  CAS  PubMed  Google Scholar 

  2. Lin X, Miao P, Wang J, Yuan F, Guan Y, Tang Y, et al. Surgery-related thrombosis critically affects the brain infarct volume in mice following transient middle cerebral artery occlusion. PLoS One. 2013;8(9):e75561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen C, Lin X, Wang J, Tang G, Mu Z, Chen X, et al. Effect of HMGB1 on the paracrine action of EPC promotes post-ischemic neovascularization in mice. Stem Cells. 2014;32(10):2679–89.

    Article  CAS  PubMed  Google Scholar 

  4. Guan Y, Wang Y, Yuan F, Lu H, Ren Y, Xiao T, et al. Effect of suture properties on stability of middle cerebral artery occlusion evaluated by synchrotron radiation angiography. Stroke. 2012;43(3):888–91.

    Article  PubMed  Google Scholar 

  5. Yuan F, Tang Y, Lin X, Xi Y, Guan Y, Xiao T, et al. Optimizing suture middle cerebral artery occlusion model in C57BL/6 mice circumvents posterior communicating artery dysplasia. J Neurotrauma. 2012;29(7):1499–505.

    Article  PubMed  Google Scholar 

  6. Li Y, Huang J, He X, Tang G, Tang YH, Liu Y, et al. Postacute stromal cell-derived factor-1alpha expression promotes neurovascular recovery in ischemic mice. Stroke. 2014;45(6):1822–9.

    Article  CAS  PubMed  Google Scholar 

  7. Huang J, Li Y, Tang Y, Tang G, Yang GY, Wang Y. CXCR4 antagonist AMD3100 protects blood-brain barrier integrity and reduces inflammatory response after focal ischemia in mice. Stroke. 2013;44(1):190–7.

    Article  CAS  PubMed  Google Scholar 

  8. Shanbhag NC, Henning RH, Schilling L. Long-term survival in permanent middle cerebral artery occlusion: a model of malignant stroke in rats. Sci Rep. 2016;6:28401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fluri F, Schuhmann MK, Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther. 2015;9:3445–54.

    PubMed  PubMed Central  Google Scholar 

  10. Shimazu T, Inoue I, Araki N, Asano Y, Sawada M, Furuya D, et al. A peroxisome proliferator-activated receptor-gamma agonist reduces infarct size in transient but not in permanent ischemia. Stroke. 2005;36(2):353–9.

    Article  CAS  PubMed  Google Scholar 

  11. Spratt NJ, Fernandez J, Chen M, Rewell S, Cox S, van Raay L, et al. Modification of the method of thread manufacture improves stroke induction rate and reduces mortality after thread-occlusion of the middle cerebral artery in young or aged rats. J Neurosci Methods. 2006;155(2):285–90.

    Article  PubMed  Google Scholar 

  12. Armitage GA, Todd KG, Shuaib A, Winship IR. Laser speckle contrast imaging of collateral blood flow during acute ischemic stroke. J Cereb Blood Flow Metab. 2010;30(8):1432–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ishrat T, Pillai B, Ergul A, Hafez S, Fagan SC. Candesartan reduces the hemorrhage associated with delayed tissue plasminogen activator treatment in rat embolic stroke. Neurochem Res. 2013;38(12):2668–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang RL, Chopp M, Zhang ZG, Jiang Q, Ewing JR. A rat model of focal embolic cerebral ischemia. Brain Res. 1997;766(1–2):83–92.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Z, Zhang RL, Jiang Q, Raman SB, Cantwell L, Chopp M. A new rat model of thrombotic focal cerebral ischemia. J Cereb Blood Flow Metab. 1997;17(2):123–35.

    Article  PubMed  Google Scholar 

  16. Gerriets T, Li F, Silva MD, Meng X, Brevard M, Sotak CH, et al. The macrosphere model: evaluation of a new stroke model for permanent middle cerebral artery occlusion in rats. J Neurosci Methods. 2003;122(2):201–11.

    Article  PubMed  Google Scholar 

  17. Miyake K, Takeo S, Kaijihara H. Sustained decrease in brain regional blood flow after microsphere embolism in rats. Stroke. 1993;24(3):415–20.

    Article  CAS  PubMed  Google Scholar 

  18. Kilic E, Hermann DM, Hossmann KA. A reproducible model of thromboembolic stroke in mice. Neuroreport. 1998;9(13):2967–70.

    Article  CAS  PubMed  Google Scholar 

  19. Overgaard K. Thrombolytic therapy in experimental embolic stroke. Cerebrovasc Brain Metab Rev. 1994;6(3):257–86.

    CAS  PubMed  Google Scholar 

  20. Brinker G, Franke C, Hoehn M, Uhlenkuken U, Hossmann KA. Thrombolysis of cerebral clot embolism in rat: effect of treatment delay. Neuroreport. 1999;10(16):3269–72.

    Article  CAS  PubMed  Google Scholar 

  21. Krafft PR, Bailey EL, Lekic T, Rolland WB, Altay O, Tang J, et al. Etiology of stroke and choice of models. Int J Stroke. 2012;7(5):398–406.

    Article  PubMed  Google Scholar 

  22. Zhang L, Zhang ZG, Zhang C, Zhang RL, Chopp M. Intravenous administration of a GPIIb/IIIa receptor antagonist extends the therapeutic window of intra-arterial tenecteplase-tissue plasminogen activator in a rat stroke model. Stroke. 2004;35(12):2890–5.

    Article  CAS  PubMed  Google Scholar 

  23. Papadopoulos SM, Chandler WF, Salamat MS, Topol EJ, Sackellares JC. Recombinant human tissue-type plasminogen activator therapy in acute thromboembolic stroke. J Neurosurg. 1987;67(3):394–8.

    Article  CAS  PubMed  Google Scholar 

  24. Takano K, Carano RA, Tatlisumak T, Meiler M, Sotak CH, Kleinert HD, et al. Efficacy of intra-arterial and intravenous prourokinase in an embolic stroke model evaluated by diffusion-perfusion magnetic resonance imaging. Neurology. 1998;50(4):870–5.

    Article  CAS  PubMed  Google Scholar 

  25. Rapp JH, Pan XM, Yu B, Swanson RA, Higashida RT, Simpson P, et al. Cerebral ischemia and infarction from atheroemboli <100 microm in size. Stroke. 2003;34(8):1976–80.

    Article  PubMed  Google Scholar 

  26. Ahn SM, Kim HN, Kim YR, Choi YW, Kim CM, Shin HK, et al. Emodin from Polygonum multiflorum ameliorates oxidative toxicity in HT22 cells and deficits in photothrombotic ischemia. J Ethnopharmacol. 2016;188:13–20.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu L, Hoffmann A, Wintermark M, Pan X, Tu R, Rapp JH. Do microemboli reach the brain penetrating arteries? J Surg Res. 2012;176(2):679–83.

    Article  PubMed  Google Scholar 

  28. Orset C, Macrez R, Young AR, Panthou D, Angles-Cano E, Maubert E, et al. Mouse model of in situ thromboembolic stroke and reperfusion. Stroke. 2007;38(10):2771–8.

    Article  PubMed  Google Scholar 

  29. Niessen F, Hilger T, Hoehn M, Hossmann KA. Differences in clot preparation determine outcome of recombinant tissue plasminogen activator treatment in experimental thromboembolic stroke. Stroke. 2003;34(8):2019–24.

    Article  CAS  PubMed  Google Scholar 

  30. Wayman C, Duricki DA, Roy LA, Haenzi B, Tsai SY, Kartje G, et al. Performing permanent distal middle cerebral with common carotid artery occlusion in aged rats to study cortical ischemia with sustained disability. J Vis Exp. 2016;108:53106.

    Google Scholar 

  31. Qian C, Li PC, Jiao Y, Yao HH, Chen YC, Yang J, et al. Precise characterization of the penumbra revealed by MRI: a modified Photothrombotic stroke model study. PLoS One. 2016;11(4):e0153756.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liao LD, Bandla A, Ling JM, Liu YH, Kuo LW, Chen YY, et al. Improving neurovascular outcomes with bilateral forepaw stimulation in a rat photothrombotic ischemic stroke model. Neurophotonics. 2014;1(1):011007.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Frauenknecht K, Diederich K, Leukel P, Bauer H, Schabitz WR, Sommer CJ, et al. Functional improvement after Photothrombotic stroke in rats is associated with different patterns of dendritic plasticity after G-CSF treatment and G-CSF treatment combined with concomitant or sequential constraint-induced movement therapy. PLoS One. 2016;11(1):e0146679.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Scalzo F, Nour M, Liebeskind DS. Data science of stroke imaging and enlightenment of the penumbra. Front Neurol. 2015;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bacigaluppi M, Comi G, Hermann DM. Animal models of ischemic stroke. Part two: modeling cerebral ischemia. Open Neurol J. 2010;4:34–8.

    PubMed  PubMed Central  Google Scholar 

  36. Wang X, Zhu C, Wang X, Gerwien JG, Schrattenholz A, Sandberg M, et al. The nonerythropoietic asialoerythropoietin protects against neonatal hypoxia-ischemia as potently as erythropoietin. J Neurochem. 2004;91(4):900–10.

    Article  CAS  PubMed  Google Scholar 

  37. Bona E, Johansson BB, Hagberg H. Sensorimotor function and neuropathology five to six weeks after hypoxia-ischemia in seven-day-old rats. Pediatr Res. 1997;42(5):678–83.

    Article  CAS  PubMed  Google Scholar 

  38. Colver A, Fairhurst C, Pharoah PO. Cerebral palsy. Lancet. 2014;383(9924):1240–9.

    Article  PubMed  Google Scholar 

  39. Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev. 1979;3(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  40. Hagberg H, Bona E, Gilland E, Puka-Sundvall M. Hypoxia-ischaemia model in the 7-day-old rat: possibilities and shortcomings. Acta Paediatr Suppl. 1997;422:85–8.

    Article  CAS  PubMed  Google Scholar 

  41. Park JA, Lee CH. Time-course change of Redd1 expressions in the hippocampal CA1 region following chronic cerebral hypoperfusion. Cell Mol Neurobiol. 2016;37(3):563–9.

    Article  PubMed  Google Scholar 

  42. Karpiak SE, Tagliavia A, Wakade CG. Animal models for the study of drugs in ischemic stroke. Annu Rev Pharmacol Toxicol. 1989;29:403–14.

    Article  CAS  PubMed  Google Scholar 

  43. Ohta H, Nishikawa H, Kimura H, Anayama H, Miyamoto M. Chronic cerebral hypoperfusion by permanent internal carotid ligation produces learning impairment without brain damage in rats. Neuroscience. 1997;79(4):1039–50.

    Article  CAS  PubMed  Google Scholar 

  44. Tsuchiya M, Sako K, Yura S, Yonemasu Y. Cerebral blood flow and histopathological changes following permanent bilateral carotid artery ligation in Wistar rats. Exp Brain Res. 1992;89(1):87–92.

    Article  CAS  PubMed  Google Scholar 

  45. Ganzella M, de Oliveira ED, Comassetto DD, Cechetti F, Cereser VH Jr, Moreira JD, et al. Effects of chronic guanosine treatment on hippocampal damage and cognitive impairment of rats submitted to chronic cerebral hypoperfusion. Neurol Sci. 2012;33(5):985–97.

    Article  PubMed  Google Scholar 

  46. Gu L, Huang B, Shen W, Gao L, Ding Z, Wu H, et al. Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi. J Neuroinflammation. 2013;10:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pulsinelli WA, Buchan AM. The four-vessel occlusion rat model: method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke. 1988;19(7):913–4.

    Article  CAS  PubMed  Google Scholar 

  48. Furlow TW Jr. Cerebral ischemia produced by four-vessel occlusion in the rat: a quantitative evaluation of cerebral blood flow. Stroke. 1982;13(6):852–5.

    Article  PubMed  Google Scholar 

  49. D’Cruz BJ, Logue ES, Falke E, DeFranco DB, Callaway CW. Hypothermia and ERK activation after cardiac arrest. Brain Res. 2005;1064(1–2):108–18.

    Article  PubMed  Google Scholar 

  50. Neumar RW, Bircher NG, Sim KM, Xiao F, Zadach KS, Radovsky A, et al. Epinephrine and sodium bicarbonate during CPR following asphyxial cardiac arrest in rats. Resuscitation. 1995;29(3):249–63.

    Article  CAS  PubMed  Google Scholar 

  51. D’Cruz BJ, Fertig KC, Filiano AJ, Hicks SD, DeFranco DB, Callaway CW. Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation. J Cereb Blood Flow Metab. 2002;22(7):843–51.

    Article  PubMed  Google Scholar 

  52. Cherry BH, Nguyen AQ, Hollrah RA, Olivencia-Yurvati AH, Mallet RT. Modeling cardiac arrest and resuscitation in the domestic pig. World J Crit Care Med. 2015;4(1):1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986;17(6):1304–8.

    Article  CAS  PubMed  Google Scholar 

  54. Tang G, Liu Y, Zhang Z, Lu Y, Wang Y, Huang J, et al. Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia. Stem Cells. 2014;32(12):3150–62.

    Article  CAS  PubMed  Google Scholar 

  55. He X, Li Y, Lu H, Zhang Z, Wang Y, Yang GY. Netrin-1 overexpression promotes white matter repairing and remodeling after focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 2013;33(12):1921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tang Y, Wang J, Lin X, Wang L, Shao B, Jin K, et al. Neural stem cell protects aged rat brain from ischemia-reperfusion injury through neurogenesis and angiogenesis. J Cereb Blood Flow Metab. 2014;34(7):1138–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Han H, Wu LM, Han MX, Yang WM, Wang YX, Fang ZH. Diabetes impairs spatial learning and memory and hippocampal neurogenesis via BDNF in rats with transient global ischemia. Brain Res Bull. 2016;124:269–77.

    Article  CAS  PubMed  Google Scholar 

  58. Choi SH, Woodlee MT, Hong JJ, Schallert T. A simple modification of the water maze test to enhance daily detection of spatial memory in rats and mice. J Neurosci Methods. 2006;156(1–2):182–93.

    Article  PubMed  Google Scholar 

  59. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848–58.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Yuan Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.and Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., Qin, C., Yang, GY. (2017). Animal Models for Ischemic Stroke. In: Lapchak, P., Yang, GY. (eds) Translational Research in Stroke. Translational Medicine Research. Springer, Singapore. https://doi.org/10.1007/978-981-10-5804-2_16

Download citation

Publish with us

Policies and ethics