Intelligent Computing Methods in Language Processing by Brain

  • Ashish RanjanEmail author
  • R. B. Mishra
  • A. K. Singh
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 712)


Language processing by brain focuses on experimental, theoretical and psychological study of the brain functioning while processing language. Techniques of dynamic brain imaging and behavioral study require mathematical modeling and methods to explore the scenario. Intelligent computing methods model the observed behavior and process images to obtain clear picture of the brain. This paper illustrates the various models and methodology of neurolinguistic with special emphasis on intelligent computing methods in the field. Finally a comparative study of research going on aphasia and dyslexia has been done.


Neurolinguistic model fMRI EEG MEG PET-scan ERP SOM 


  1. 1.
    George, C.: Boeree: Speech and the Brain (2004).
  2. 2.
    Friederici, A.D.: The brain basis of language processing: from structure to function. Physiol. Rev. Publ. 91(4), 1357–1392 (2011)Google Scholar
  3. 3.
    Broca area: The Editors of Encyclopædia Britannica.
  4. 4.
    Grodzinsky, Y., Santi, A.: The battle of Broca region. Trends Cogn. Sci. 12(12), 474–480 (2008)Google Scholar
  5. 5.
    Anatomy of Speech & Language.
  6. 6.
    Methods of Investigating Brain and Language.
  7. 7.
  8. 8.
  9. 9.
    Despotović, I., Goossens, B., Philips, W.: MRI segmentation of the human brain: challenges, methods, and applications. Comput. Math. Methods Med. 2015 (2015). Article ID 450341Google Scholar
  10. 10.
    Dogil, G., Ackermann, H., Grodd, W., Haider, H., Kamp, H., Mayer, J., Riecker, A., Wildgruber, D.: The speaking brain: a tutorial introduction to fMRI experiments in the production of speech, prosody and syntax. J. Neurolinguistics 15, 59–90 (2002)Google Scholar
  11. 11.
    Cathy, J.: Price: a review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 62(2), 816–847 (2012)CrossRefGoogle Scholar
  12. 12.
    Magnetoencephalography: Wikipedia.
  13. 13.
    Gouvea, A.C.: (FIU): current advances in neurolinguistics: the use of electroencephalography (EEG) to study language. Neurociência da Linguagem 7(2) (2011)Google Scholar
  14. 14.
    Yu, Y., Lu, S., Zhu, W., Li, C., Lin, Z., Wu, J.: Application of ERP in neurolinguistics: a review of recent studies. Neurosci. Biomed. Eng. 4(3), 195–201Google Scholar
  15. 15.
    Macwhinney, B., Li, P.: Neurolinguistic computational models. In: Handbook of the Neuroscience of LanguageGoogle Scholar
  16. 16.
    Geschwind, N.: Specializations of the human brain. Sci. Am. 241, 180–199 (1979)CrossRefGoogle Scholar
  17. 17.
    Morton, J.: A functional model for memory. In: Norman, D.A. (ed.) Models of Human Memory, pp. 203–248. Academic Press, New York (1970)CrossRefGoogle Scholar
  18. 18.
    McClelland, J.L., Rumelhart, D.E.: An interactive activation model of context effects in letter perception: part 1. An account of the basic findings. Psychol. Rev. 88, 375–402 (1981)CrossRefGoogle Scholar
  19. 19.
    Kohonen, T.: Self-organizing Maps, 3rd edn. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Miikkulainen, R., Bednar, J.A., Choe, Y., Sirosh, J.: Computational Maps in the Visual Cortex. Springer, New York (2005)Google Scholar
  21. 21.
    Li, P., Zhao, X., MacWhinney, B.: Dynamic self-organization and early lexical development in children. Cogn. Sci. 31, 581–612 (2007)CrossRefGoogle Scholar
  22. 22.
    Elman, J.L., Bates, E., Johnson, M., Karmiloff-Smith, A., Parisi, D., Plunkett, K.: Rethinking Innateness. MIT Press, Cambridge (1996)Google Scholar
  23. 23.
    MacDonald, M.C., Pearlmutter, N.J., Seidenberg, M.S.: Lexical nature of syntactic ambiguity resolution. Psychol. Rev. 101(4), 676–703 (1994)CrossRefGoogle Scholar
  24. 24.
    MacWhinney, B., Hillsdale, N.J.: Lawrence Erlbaum. The competition model. In: MacWhinney, B. (ed.) Mechanisms of Language Acquisition, pp. 249–308 (1987)Google Scholar
  25. 25.
    Bullinaria, J.A., Chater, N.: Connectionist modelling: implications for cognitive neuropsychology. Lang. Cogn. Process. 10, 227–264 (1995)CrossRefGoogle Scholar
  26. 26.
    Plaut, D., Shallice, T.: Deep dyslexia: a case study of connectionist neuropsychology. Cogn. Neuropsychol. 10, 377–500 (1993)CrossRefGoogle Scholar
  27. 27.
    Elman, J.l.: Distributed representations, simple recurrent networks, and grammatical structure. Mach. Learn. 7, 195–225 (1991)Google Scholar
  28. 28.
    Davatzikos, C.: Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage 23(1), 17–20 (2004)CrossRefGoogle Scholar
  29. 29.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)Google Scholar
  30. 30.
    Scholkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2001)Google Scholar
  31. 31.
    Lao, Z., et al.: Morphological classification of brains via high-dimensional shape transformations and machine learning methods. NeuroImage 21(1), 46–57 (2004)Google Scholar
  32. 32.
    Fan, Y., et al.: COMPARE: classification of morphological patterns using adaptive regional elements. IEEE TMI 26(1), 93–105 (2007)Google Scholar
  33. 33.
    Hudson, T.E., Maloney, L.T., Landy, M.S.: Optimal compensation for temporal uncertainty in movement planning. PLoS Comput. Biol. 4(7) (2008)Google Scholar
  34. 34.
    Jacobs, R.A.: Optimal integration of texture and motion cues to depth. Vis. Res. 39(21), 3621–3629 (1999)CrossRefGoogle Scholar
  35. 35.
    Goldreich, D.: A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions. PLoS ONE 2(3), e333 (2007)CrossRefGoogle Scholar
  36. 36.
    George, D., Hawkins, J.: Towards a mathematical theory of cortical micro-circuits. PLoS Comput. Biol. 5(10), e1000532 (2009). doi: 10.1371/journal.pcbi.1000532 MathSciNetCrossRefGoogle Scholar
  37. 37.
    Warren, T., Dickey, M.W., Lei, C.M.: Structural prediction in aphasia: evidence from either. J. Neurolinguistics 39, 38–48 (2016)CrossRefGoogle Scholar
  38. 38.
    Hanne, S., Burchert, F., De Bleser, R., Vasishth, S.: Sentence comprehension and morphological cues in aphasia: what eye-tracking reveals about integration and prediction. J. Neurolinguistics 34, 83–111 (2015)CrossRefGoogle Scholar
  39. 39.
    Cruice, M., Pritchard, M., Dipper, L.: Verb use in aphasic and non-aphasic personal discourse: what is normal? J. Neurolinguistics 28, 31–47 (2014)CrossRefGoogle Scholar
  40. 40.
    Della Rosa, P.A., Canini, M., Borsa, V.M., Marien, P., Cappa, S.F., Abutalebi, J.: Functional recovery in subcortical crossed and standard aphasia. J. Neurolinguistics 27(1), 103–118 (2014). doi: 10.1016/j.jneuroling.2013.09.004 CrossRefGoogle Scholar
  41. 41.
    Tuomiranta, L., Gronroos, A.M., Martin, N., Laine, M.: Vocabulary acquisition in aphasia: modality can matter. J. Neurolinguistics 32, 42–58 (2014)CrossRefGoogle Scholar
  42. 42.
    Wang, H., Yoshida, M., Thompson, C.K.: Parallel functional category deficits in clauses and nominal phrases: the case of English agrammatism. J. Neurolinguistics 27(1), 75–102 (2014)CrossRefGoogle Scholar
  43. 43.
    Bart den Ouden, D., Fix, S., Parrish, T.B., Thompson, C.K.: Argument structure effects in action verb naming in static and dynamic conditions. J. Neurolinguistics 22(2), 195–215 (2009)Google Scholar
  44. 44.
    Sebastian, R., Kiran, S., Sandberg, C.: Semantic processing in Spanish-English bilinguals with aphasia. J. Neurolinguistics 25(4), 240–262 (2012)CrossRefGoogle Scholar
  45. 45.
    Karni, A., Morocz, I.A., Bitan, T., Shaul, S., Kushnir, T., Breznitz, Z.: An fMRI study of the differential effects of word presentation rates (reading acceleration) on dyslexic readers’ brain activity patterns. J. Neurolinguistics 18(2), 197–219 (2005)CrossRefGoogle Scholar
  46. 46.
    Oren, R., Breznitz, Z.: Reading processes in L1 and L2 among dyslexic as compared to regular bilingual readers: behavioral and electrophysiological evidence. J. Neurolinguistics 18(2), 127–151 (2005)CrossRefGoogle Scholar
  47. 47.
    Shiran, A., Breznitz, Z.: The effect of cognitive training on recall range and speed of information processing in the working memory of dyslexic and skilled readers. J. Neurolinguistics 24(5), 524–537 (2011)CrossRefGoogle Scholar
  48. 48.
    Richards, T.L., Aylward, E.H., Berninger, V.W., Field, K.M., Grimme, A.C., Richards, A.L., Nagy, W.: Individual fMRI activation in orthographic mapping and morpheme mapping after orthographic or morphological spelling treatment in child dyslexics. J. Neurolinguistics 19(1), 56–86 (2006)CrossRefGoogle Scholar
  49. 49.
    Leeuwen, T.V., Been, P., Herten, M.V., Zwarts, F., Maassen, B., der Leij, A.V.: Two-month-old infants at risk for dyslexia do not discriminate /bAk/ from /dAk/: a brain-mapping study. J. Neurolinguistics 21(4), 333–348 (2008)CrossRefGoogle Scholar
  50. 50.
    Dandache, S., Wouters, J., Ghesquière, P.: Development of reading and phonological skills of children at family risk for dyslexia: a longitudinal analysis from kindergarten to sixth grade. Dyslexia 20(4), 305–329 (2014). doi: 10.1002/dys.1482

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Humanistic StudiesIIT BHUVaranasiIndia
  2. 2.Department of Computer Science & EngineeringIIT BHUVaranasiIndia

Personalised recommendations