Skip to main content

Processing of Historic Inscription Images

  • 625 Accesses


The study and analysis of epigraphy is important for knowing about the past. From around third century to modern times, about 90,000 inscriptions have been discovered from different parts of India.

This chapter is based on the conference papers published in proceedings of NCC 2013 (IEEE explore) and ICVGIP 2014 (ACM digital library).

This is a preview of subscription content, access via your institution.


  1. Salomon R (1998) Indian epigraphy. A guide to the study of inscriptions in Sanskrit, Prakrit, and the other Indo-Aryan languages. Oxford University Press

    Google Scholar 

  2. Verghese A, Dallapiccola, AL (eds) (2011) South India under Vijayanagara, art and archaeology. Oxford University Press

    Google Scholar 

  3. Hyvarinen A, Karhunen J, Oja E (2004) Independent component analysis, vol 46. Wiley

    Google Scholar 

  4. Sreedevi I et al (2013) Enhancement of inscription images. In: 2013 National Conference on Communications (NCC). IEEE. “978-1-4673-5952-8/13/$ 31.00 2013 IEEE”

    Google Scholar 

  5. Sreedevi I et al (2013) Ngfica based digitization of historic inscription images. ISRN Signal Process 2013:7, Article ID 735857.

  6. Jayanthi N et al (2014) Digitization of historic inscription images using cumulants based simultaneous blind source extraction. In: Proceedings of the 2014 Indian conference on computer vision graphics and image processing. ACM. “Copyright 2014 ACM 978-1-4503-3061-9/14/12 ...$15.00

  7. Amari S-I, Cichocki A, Yang HH (1996) A new learning algorithm for blind signal separation. Adv Neural Inf Process Syst 757–763

    Google Scholar 

  8. Amari S, Douglas S (2001) Why natural gradient? Brain Style Information Systems Group, Japan

    Google Scholar 

  9. Nery MS et al (2005) Determining the appropriate feature set for fish classification tasks. In: XVIII Brazilian symposium on computer graphics and image processing (SIBGRAPI’05). IEEE

    Google Scholar 

  10. Optical character recognition.

  11. Cichocki A, Amari S-I (2002) Adaptive blind signal and image processing: learning algorithms and applications, vol 1. Wiley

    Google Scholar 

  12. Tonazzini Anna, Bedini Luigi, Salerno Emanuele (2004) Independent component analysis for document restoration. Doc Anal Recogn 7(1):17–27

    Google Scholar 

  13. Cruces-Alvarez SA, Cichocki A, Amari S-I (2004) From blind signal extraction to blind instantaneous signal separation: criteria, algorithms, and stability. IEEE Trans Neural Netw 15(4):859–873

    CrossRef  Google Scholar 

  14. Cruces-Alvarez Sergio A, Cichocki Andrzej, Amari Shun-Ichi (2002) On a new blind signal extraction algorithm: different criteria and stability analysis. IEEE Signal Process Lett 9(8):233–236

    CrossRef  Google Scholar 

  15. Katsumata Naoto, Matsuyama Yasuo (2005) Database retrieval for similar images using ICA and PCA bases. Eng Appl Artif Intell 18(6):705–717

    CrossRef  Google Scholar 

  16. Huber PJ (1985) Projection pursuit. In: The annals of statistics, pp 435–475

    Google Scholar 

  17. Blaschke Tobias, Wiskott Laurenz (2004) CuBICA: Independent component analysis by simultaneous third-and fourth-order cumulant diagonalization. IEEE Trans Signal Process 52(5):1250–1256

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Otsu Nobuyuki (1975) A threshold selection method from gray-level histograms. Automatica 11(285-296):23–27

    Google Scholar 

  19. Garainl, et al (2008) Machine reading of camera-held low quality text images: an ICA-based image enhancement approach for improving OCR accuracy. In: 2008 19th International Conference on Pattern Recognition, ICPR 2008. IEEE

    Google Scholar 

  20. Pratikakis I, Gatos B, Ntirogiannis K (2010) H-DIBCO 2010-handwritten document image binarization competition. In: 2010 international conference on frontiers in handwriting recognition (ICFHR). IEEE

    Google Scholar 

  21. Pratikakis I, Gatos B, Ntirogiannis K (2013) ICDAR 2013 document image binarization contest (DIBCO 2013). In: 2013 12th international conference on document analysis and recognition (ICDAR). IEEE

    Google Scholar 

Download references


This work is an output of DST-funded Project IDH. This work would not have been completed without the help of Ayush, Aman, Rishi Pandey and Geetanjali Bhola.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jayanthi Natarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sreedevi, I., Natarajan, J., Chaudhury, S. (2017). Processing of Historic Inscription Images. In: Mallik, A., Chaudhury, S., Chandru, V., Srinivasan, S. (eds) Digital Hampi: Preserving Indian Cultural Heritage. Springer, Singapore.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5737-3

  • Online ISBN: 978-981-10-5738-0

  • eBook Packages: Computer ScienceComputer Science (R0)