Skip to main content

Interactions Between Genetics, Lifestyle, and Environmental Factors for Healthcare

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1005))

Abstract

The occurrence and progression of diseases are strongly associated with a combination of genetic, lifestyle, and environmental factors. Understanding the interplay between genetic and nongenetic components provides deep insights into disease pathogenesis and promotes personalized strategies for people healthcare. Recently, the paradigm of systems medicine, which integrates biomedical data and knowledge at multidimensional levels, is considered to be an optimal way for disease management and clinical decision-making in the era of precision medicine. In this chapter, epigenetic-mediated genetics-lifestyle-environment interactions within specific diseases and different ethnic groups are systematically discussed, and data sources, computational models, and translational platforms for systems medicine research are sequentially presented. Moreover, feasible suggestions on precision healthcare and healthy longevity are kindly proposed based on the comprehensive review of current studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rimm EB, Stampfer MJ. Diet, lifestyle, and longevity—the next steps? JAMA. 2004;292(12):1490–2.

    Article  CAS  PubMed  Google Scholar 

  2. Shen S, et al. Biomarker MicroRNAs for diagnosis, prognosis and treatment of hepatocellular carcinoma: a functional survey and comparison. Sci Rep. 2016;6:38311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tang Y, et al. Identification of novel microRNA regulatory pathways associated with heterogeneous prostate cancer. BMC Syst Biol. 2013;7(Suppl 3):S6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ma LY, et al. Heterogeneity among patients with Parkinson’s disease: cluster analysis and genetic association. J Neurol Sci. 2015;351(1–2):41–5.

    Article  PubMed  Google Scholar 

  5. Jiang J, et al. Top associated SNPs in prostate cancer are significantly enriched in cis-expression quantitative trait loci and at transcription factor binding sites. Oncotarget. 2014;5(15):6168–77.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ionita-Laza I, et al. Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics. 2009;93(1):22–6.

    Article  CAS  PubMed  Google Scholar 

  7. Marmot MG, Adelstein AM, Bulusu L. Lessons from the study of immigrant mortality. Lancet. 1984;1(8392):1455–7.

    Article  CAS  PubMed  Google Scholar 

  8. Passarino G, De Rango F, Montesanto A. Human longevity: genetics or lifestyle? It takes two to tango. Immun Ageing. 2016;13:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Berger SL, et al. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petronis A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature. 2010;465(7299):721–7.

    Article  CAS  PubMed  Google Scholar 

  11. He, Y., et al., From genetics to epigenetics: new insights into keloid scarring.. Cell Prolif, 2017.

    Google Scholar 

  12. Zhang XY, Zhang PY. Genetics and epigenetics of melanoma. Oncol Lett. 2016;12(5):3041–4.

    PubMed  PubMed Central  Google Scholar 

  13. Govindaraju D, Atzmon G, Barzilai N. Genetics, lifestyle and longevity: lessons from centenarians. Appl Transl Genom. 2015;4:23–32.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dato S, et al. Exploring the role of genetic variability and lifestyle in oxidative stress response for healthy aging and longevity. Int J Mol Sci. 2013;14(8):16443–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kramer DA. Commentary: gene-environment interplay in the context of genetics, epigenetics, and gene expression. J Am Acad Child Adolesc Psychiatry. 2005;44(1):19–27.

    Article  PubMed  Google Scholar 

  16. Roukos DH. Longevity with systems medicine? Epigenome, genome and environment interactions network. Epigenomics. 2012;4(2):119–23.

    Article  CAS  PubMed  Google Scholar 

  17. Skinner MK. Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol. 2014;398(1–2):4–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Skinner MK, Guerrero-Bosagna C, Haque MM. Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics. 2015;10(8):762–71.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Libert S, Pletcher SD. Modulation of longevity by environmental sensing. Cell. 2007;131(7):1231–4.

    Article  CAS  PubMed  Google Scholar 

  20. Chrysohoou C, et al. Cardiovascular disease-related lifestyle factors and longevity. Cardiol Res Pract. 2011;2011:386892.

    PubMed  PubMed Central  Google Scholar 

  21. Metsios GS, et al. Passive smoking and the development of cardiovascular disease in children: a systematic review. Cardiol Res Pract. 2010;2011:Article ID 587650.

    Google Scholar 

  22. de Lorgeril M, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343(8911):1454–9.

    Article  PubMed  Google Scholar 

  23. Antonogeorgos G, et al. Understanding the role of depression and anxiety on cardiovascular disease risk, using structural equation modeling; the mediating effect of the Mediterranean diet and physical activity: the ATTICA study. Ann Epidemiol. 2012;22(9):630–7.

    Article  PubMed  Google Scholar 

  24. Carter S, et al. Sedentary behavior and cardiovascular disease risk: mediating mechanisms. Exerc Sport Sci Rev. 2017;45:80–6.

    Article  PubMed  Google Scholar 

  25. Saleh ZT, et al. Decreasing sedentary behavior by 30 minutes per day reduces cardiovascular disease risk factors in rural Americans. Heart Lung. 2015;44(5):382–6.

    Article  PubMed  Google Scholar 

  26. Willer CJ, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40(2):161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang CP, Bruneau BG. Epigenetics and cardiovascular development. Annu Rev Physiol. 2012;74:41–68.

    Article  CAS  PubMed  Google Scholar 

  28. Kelishadi R, Poursafa P. A review on the genetic, environmental, and lifestyle aspects of the early-life origins of cardiovascular disease. Curr Probl Pediatr Adolesc Health Care. 2014;44(3):54–72.

    Article  PubMed  Google Scholar 

  29. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–17.

    Article  CAS  PubMed  Google Scholar 

  30. Compston A, Coles A. Multiple sclerosis. Lancet. 2002;359(9313):1221–31.

    Article  PubMed  Google Scholar 

  31. Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  32. Hedstrom AK, et al. Smoking and two human leukocyte antigen genes interact to increase the risk for multiple sclerosis. Brain. 2011;134(Pt 3):653–64.

    Article  PubMed  Google Scholar 

  33. Sundqvist E, et al. Confirmation of association between multiple sclerosis and CYP27B1. Eur J Hum Genet. 2010;18(12):1349–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mokry LE, et al. Vitamin D and risk of multiple sclerosis: a Mendelian randomization study. PLoS Med. 2015;12(8):e1001866.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Girirajan S, et al. Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder. Am J Hum Genet. 2013;92(2):221–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O’Roak BJ, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338(6114):1619–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Krumm N, et al. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci. 2014;37(2):95–105.

    Article  CAS  PubMed  Google Scholar 

  38. Shen L, et al. Knowledge-guided bioinformatics model for identifying autism spectrum disorder diagnostic MicroRNA biomarkers. Sci Rep. 2016;6:39663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu L, Wu Y, Wu BL. Genetic architecture, epigenetic influence and environment exposure in the pathogenesis of Autism. Sci China Life Sci. 2015;58(10):958–67.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu L, et al. Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Hum Mol Genet. 2014;23(6):1563–78.

    Article  PubMed  CAS  Google Scholar 

  41. Harony-Nicolas H, et al. Brain region-specific methylation in the promoter of the murine oxytocin receptor gene is involved in its expression regulation. Psychoneuroendocrinology. 2014;39:121–31.

    Article  CAS  PubMed  Google Scholar 

  42. Kubota T, Mochizuki K. Epigenetic effect of environmental factors on autism spectrum disorders. Int J Environ Res Public Health. 2016;13(5):504.

    Article  PubMed Central  CAS  Google Scholar 

  43. Gao HM, Hong JS. Gene-environment interactions: key to unraveling the mystery of Parkinson’s disease. Prog Neurobiol. 2011;94(1):1–19.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chuang YH, et al. Gene-environment interaction in Parkinson’s disease: coffee, ADORA2A, and CYP1A2. Neuroepidemiology. 2016;47(3–4):192–200.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hamza TH, et al. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee. PLoS Genet. 2011;7(8):e1002237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee PC, et al. Gene-environment interactions linking air pollution and inflammation in Parkinson’s disease. Environ Res. 2016;151:713–20.

    Article  CAS  PubMed  Google Scholar 

  47. Gabrielsen ME, et al. Association between a 15q25 gene variant, nicotine-related habits, lung cancer and COPD among 56,307 individuals from the HUNT study in Norway. Eur J Hum Genet. 2013;21(11):1293–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Improgo MR, et al. From smoking to lung cancer: the CHRNA5/A3/B4 connection. Oncogene. 2010;29(35):4874–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu ZW, et al. CHRNA5 rs16969968 polymorphism association with risk of lung cancer—evidence from 17,962 lung cancer cases and 77,216 control subjects. Asian Pac J Cancer Prev. 2015;16(15):6685–90.

    Article  PubMed  Google Scholar 

  50. Liu JZ, et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet. 2010;42(5):436–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen LS, et al. Genetic risk can be decreased: quitting smoking decreases and delays lung cancer for smokers with high and low CHRNA5 risk genotypes – a meta-analysis. EBioMedicine. 2016;11:219–26.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu Y, et al. Genomic heterogeneity of multiple synchronous lung cancer. Nat Commun. 2016;7:13200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Giovannucci E, et al. Multivitamin use, folate, and colon cancer in women in the Nurses’ health study. Ann Intern Med. 1998;129(7):517–24.

    Article  CAS  PubMed  Google Scholar 

  54. Derry MM, et al. Identifying molecular targets of lifestyle modifications in colon cancer prevention. Front Oncol. 2013;3:119.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Talukdar FR, et al. Epigenetic, genetic and environmental interactions in esophageal squamous cell carcinoma from northeast India. PLoS One. 2013;8(4):e60996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mortality, The Global Burden of Disease Study (GBD), Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the global burden of disease study 2013. Lancet. 2015;385(9963):117–71.

    Article  Google Scholar 

  57. Lee JU, Kim JD, Park CS. Gene-environment interactions in asthma: genetic and epigenetic effects. Yonsei Med J. 2015;56(4):877–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tuomi T, et al. The many faces of diabetes: a disease with increasing heterogeneity. Lancet. 2014;383(9922):1084–94.

    Article  PubMed  Google Scholar 

  59. Franks PW. The complex interplay of genetic and lifestyle risk factors in type 2 diabetes: an overview. Scientifica (Cairo). 2012;2012:482186.

    Google Scholar 

  60. Bishwajit G, et al. Lifestyle behaviors, subjective health, and quality of life among Chinese men living with type 2 diabetes. Am J Mens Health. 2016;11:357–64.

    Article  PubMed  Google Scholar 

  61. Stankovic M, et al. Gene-environment interaction between the MMP9 C-1562T promoter variant and cigarette smoke in the pathogenesis of chronic obstructive pulmonary disease. Environ Mol Mutagen. 2016;57(6):447–54.

    Article  CAS  PubMed  Google Scholar 

  62. Khlifi R, et al. Gene-environment interactions between ERCC2, ERCC3, XRCC1 and cadmium exposure in nasal polyposis disease. J Appl Genet. 2016;58:221–9.

    Article  PubMed  CAS  Google Scholar 

  63. Wang MH, Achkar JP. Gene-environment interactions in inflammatory bowel disease pathogenesis. Curr Opin Gastroenterol. 2015;31(4):277–82.

    Article  PubMed  CAS  Google Scholar 

  64. Sparks JA, Costenbader KH. Genetics, environment, and gene-environment interactions in the development of systemic rheumatic diseases. Rheum Dis Clin N Am. 2014;40(4):637–57.

    Article  Google Scholar 

  65. Shi Z, et al. Food habits, lifestyle factors and mortality among oldest old Chinese: the Chinese Longitudinal Healthy Longevity Survey (CLHLS). Forum Nutr. 2015;7(9):7562–79.

    CAS  Google Scholar 

  66. Lv J, et al. Effects of several environmental factors on longevity and health of the human population of Zhongxiang, Hubei, China. Biol Trace Elem Res. 2011;143(2):702–16.

    Article  CAS  PubMed  Google Scholar 

  67. Brown BL, Qiu L, Gu D. Associations between human rights environments and healthy longevity: the case of older persons in China. Health Hum Rights. 2012;14(2):87–105.

    PubMed  Google Scholar 

  68. Kitagawa Y, et al. Differences in lifestyle of a smoking and non-smoking population in Japan. Asian Pac J Cancer Prev. 2000;1(3):245–9.

    PubMed  Google Scholar 

  69. Morimoto A, et al. Effects of healthy dietary pattern and other lifestyle factors on incidence of diabetes in a rural Japanese population. Asia Pac J Clin Nutr. 2012;21(4):601–8.

    CAS  PubMed  Google Scholar 

  70. Matsuki N, et al. Lifestyle factors associated with gastroesophageal reflux disease in the Japanese population. J Gastroenterol. 2013;48(3):340–9.

    Article  PubMed  Google Scholar 

  71. Eguchi E, et al. Healthy lifestyle behaviours and cardiovascular mortality among Japanese men and women: the Japan collaborative cohort study. Eur Heart J. 2012;33(4):467–77.

    Article  PubMed  Google Scholar 

  72. Nishigaki Y, Fuku N, Tanaka M. Mitochondrial haplogroups associated with lifestyle-related diseases and longevity in the Japanese population. Geriatr Gerontol Int. 2010;10(Suppl 1):S221–35.

    Article  PubMed  Google Scholar 

  73. Willett WC, et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr. 1995;61(6 Suppl):1402S–6S.

    CAS  PubMed  Google Scholar 

  74. Prinelli F, et al. Mediterranean diet and other lifestyle factors in relation to 20-year all-cause mortality: a cohort study in an Italian population. Br J Nutr. 2015;113(6):1003–11.

    Article  CAS  PubMed  Google Scholar 

  75. Menotti A, et al. Lifestyle habits and mortality from all and specific causes of death: 40-year follow-up in the Italian Rural Areas of the Seven Countries Study. J Nutr Health Aging. 2014;18(3):314–21.

    Article  CAS  PubMed  Google Scholar 

  76. Pes GM, et al. Lifestyle and nutrition related to male longevity in Sardinia: an ecological study. Nutr Metab Cardiovasc Dis. 2013;23(3):212–9.

    Article  CAS  PubMed  Google Scholar 

  77. Lim W, So WY. Lifestyle-related factors and their association with metabolic syndrome in Korean adults: a population-based study. J Phys Ther Sci. 2015;27(3):555–8.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mulligan CJ, et al. Population genetics, history, and health patterns in native Americans. Annu Rev Genomics Hum Genet. 2004;5:295–315.

    Article  CAS  PubMed  Google Scholar 

  79. Hughes T, et al. Genetic, epigenetic, and environmental influences on dentofacial structures and oral health: ongoing studies of Australian twins and their families. Twin Res Hum Genet. 2013;16(1):43–51.

    Article  PubMed  Google Scholar 

  80. Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol. 2012;29(6):613–24.

    Article  CAS  Google Scholar 

  81. Liu X, et al. Detecting early-warning signals of type 1 diabetes and its leading biomolecular networks by dynamical network biomarkers. BMC Med Genomics. 2013;6(Suppl 2):S8.

    Google Scholar 

  82. Lin Y, Yuan X, Shen B. Network-based biomedical data analysis. Adv Exp Med Biol. 2016;939:309–32.

    Article  CAS  PubMed  Google Scholar 

  83. Auffray C, Chen Z, Hood L. Systems medicine: the future of medical genomics and healthcare. Genome Med. 2009;1(1):2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Gietzelt M, et al. Models and data sources used in systems medicine. A systematic literature review. Methods Inf Med. 2016;55(2):107–13.

    Article  CAS  PubMed  Google Scholar 

  85. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19(1A):A68–77.

    Google Scholar 

  87. Kanehisa M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–61.

    Article  PubMed  Google Scholar 

  88. Cowley MJ, et al. PINA v2.0: mining interactome modules. Nucleic Acids Res. 2012;40(Database issue):D862–5.

    Article  CAS  PubMed  Google Scholar 

  89. Li JH, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–7.

    Article  CAS  PubMed  Google Scholar 

  90. Hupe P, et al. ACTuDB, a new database for the integrated analysis of array-CGH and clinical data for tumors. Oncogene. 2007;26(46):6641–52.

    Article  CAS  PubMed  Google Scholar 

  91. Leal T, et al. A specific database for providing local and national level of integration of clinical data in cystic fibrosis. J Cyst Fibros. 2007;6(3):187–93.

    Article  CAS  PubMed  Google Scholar 

  92. Pinna GD, et al. From clinical data records to research: a database system for the study of clinical and functional indicators of chronic heart failure. Stud Health Technol Inform. 1997;43(Pt B):761–5.

    PubMed  Google Scholar 

  93. Neveu V, et al. Exposome-Explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res. 2017;45(D1):D979–84.

    Article  PubMed  Google Scholar 

  94. Rosenbloom KR, et al. ENCODE whole-genome data in the UCSC Genome Browser. Nucleic Acids Res. 2010;38(Database issue):D620–5.

    Article  CAS  PubMed  Google Scholar 

  95. Kramer A, et al. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30(4):523–30.

    Article  PubMed  CAS  Google Scholar 

  96. Planey CR, Butte AJ. Database integration of 4923 publicly-available samples of breast cancer molecular and clinical data. AMIA Jt Summits Transl Sci Proc. 2013;2013:138–42.

    PubMed  PubMed Central  Google Scholar 

  97. Trimarchi M, et al. Database for the collection and analysis of clinical data and images of neoplasms of the sinonasal tract. Ann Otol Rhinol Laryngol. 2004;113(4):335–7.

    Article  PubMed  Google Scholar 

  98. Yu Q, Huang JF. The DEER database: a bridge connecting drugs, environmental effects, and regulations. Gene. 2013;520(2):98–105.

    Article  CAS  PubMed  Google Scholar 

  99. Lee YC, et al. A database of gene-environment interactions pertaining to blood lipid traits, cardiovascular disease and type 2 diabetes. J Data Mining Genomics Proteomics. 2011:2(1).

    Google Scholar 

  100. Yang Q, et al. miREnvironment database: providing a bridge for microRNAs, environmental factors and phenotypes. Bioinformatics. 2011;27(23):3329–30.

    Article  CAS  PubMed  Google Scholar 

  101. Qi Y, et al. HEDD: the human epigenetic drug database. Database (Oxford). 2016:2016.

    Google Scholar 

  102. Medvedeva YA, et al. EpiFactors: a comprehensive database of human epigenetic factors and complexes. Database (Oxford). 2015;2015:bav067.

    Article  CAS  Google Scholar 

  103. Singh Nanda J, Kumar R, Raghava GP. dbEM: A database of epigenetic modifiers curated from cancerous and normal genomes. Sci Rep. 2016;6:19340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shi J, et al. PEpiD: a prostate epigenetic database in mammals. PLoS One. 2013;8(5):e64289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Balaur I, et al. EpiGeNet: a graph database of interdependencies between genetic and epigenetic events in colorectal cancer. J Comput Biol, 2016;23:1–12.

    Google Scholar 

  106. Fejes AP, Jones MJ, Kobor MS. DaVIE: database for the visualization and integration of epigenetic data. Front Genet. 2014;5:325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Dai E, et al. EpimiR: a database of curated mutual regulation between miRNAs and epigenetic modifications. Database (Oxford). 2014;2014:bau023.

    Article  CAS  Google Scholar 

  108. Zhang W, et al. Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer. J Transl Med. 2014;12:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Zhu J, et al. Screening key microRNAs for castration-resistant prostate cancer based on miRNA/mRNA functional synergistic network. Oncotarget. 2015;6(41):43819–30.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhu Y, et al. Identification of biomarker microRNAs for predicting the response of colorectal cancer to neoadjuvant chemoradiotherapy based on microRNA regulatory network. Oncotarget. 2017;8(2):2233–48.

    PubMed  Google Scholar 

  111. Chen J, et al. Clear cell renal cell carcinoma associated microRNA expression signatures identified by an integrated bioinformatics analysis. J Transl Med. 2013;11:169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yan W, et al. Identification of microRNAs as potential biomarker for gastric cancer by system biological analysis. Biomed Res Int. 2014;2014:901428.

    PubMed  PubMed Central  Google Scholar 

  113. Huang J, et al. Identification of microRNA as sepsis biomarker based on miRNAs regulatory network analysis. Biomed Res Int. 2014;2014:594350.

    PubMed  PubMed Central  Google Scholar 

  114. Yan W, et al. MicroRNA biomarker identification for pediatric acute myeloid leukemia based on a novel bioinformatics model. Oncotarget. 2015;6(28):26424–36.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Zhu Y, et al. Novel biomarker MicroRNAs for subtyping of acute coronary syndrome: a bioinformatics approach. Biomed Res Int. 2016;2016:4618323.

    PubMed  PubMed Central  Google Scholar 

  116. Cun Y, Frohlich H. netClass: an R-package for network based, integrative biomarker signature discovery. Bioinformatics. 2014;30(9):1325–6.

    Article  CAS  PubMed  Google Scholar 

  117. Wen Z, et al. MCentridFS: a tool for identifying module biomarkers for multi-phenotypes from high-throughput data. Mol BioSyst. 2014;10(11):2870–5.

    Article  CAS  PubMed  Google Scholar 

  118. Cui W, et al. Discovery and characterization of long intergenic non-coding RNAs (lincRNA) module biomarkers in prostate cancer: an integrative analysis of RNA-Seq data. BMC Genomics. 2015;16(Suppl 7):S3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Shao T, et al. Identification of module biomarkers from the dysregulated ceRNA-ceRNA interaction network in lung adenocarcinoma. Mol BioSyst. 2015;11(11):3048–58.

    Article  CAS  PubMed  Google Scholar 

  120. Chen H, et al. Pathway mapping and development of disease-specific biomarkers: protein-based network biomarkers. J Cell Mol Med. 2015;19(2):297–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cesario A, et al. A systems medicine clinical platform for understanding and managing non- communicable diseases. Curr Pharm Des. 2014;20(38):5945–56.

    Article  CAS  PubMed  Google Scholar 

  122. Oresic M, Lotjonen J, Soininen H. Systems medicine and the integration of bioinformatic tools for the diagnosis of Alzheimer’s disease. Genome Med. 2009;1(11):83.

    PubMed  Google Scholar 

  123. Gomez-Cabrero D, et al. Synergy-COPD: a systems approach for understanding and managing chronic diseases. J Transl Med. 2014;12(Suppl 2):S2.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Doel T, et al. GIFT-cloud: a data sharing and collaboration platform for medical imaging research. Comput Methods Prog Biomed. 2017;139:181–90.

    Article  Google Scholar 

  125. Kirschner M, et al. Implementing systems medicine within healthcare. Genome Med. 2015;7:102.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (NSFC) (grant nos. 31670851, 31470821, and 91530320) and National Key R&D programs of China (2016YFC1306605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bairong Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lin, Y., Chen, J., Shen, B. (2017). Interactions Between Genetics, Lifestyle, and Environmental Factors for Healthcare. In: Shen, B. (eds) Translational Informatics in Smart Healthcare. Advances in Experimental Medicine and Biology, vol 1005. Springer, Singapore. https://doi.org/10.1007/978-981-10-5717-5_8

Download citation

Publish with us

Policies and ethics