Skip to main content

Genetic Test, Risk Prediction, and Counseling

  • Chapter
  • First Online:
Translational Informatics in Smart Healthcare

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1005))

Abstract

Advancement in technology has nurtured the new era of genetic tests for personalized medicine. In this chapter, we will introduce the current development, challenges, and the outlook of genetic test, disease risk prediction, and genetic counseling. In the first section, we will present the success cases in the areas of molecular classification of tumors, pharmacogenomics, and Mendelian disorders, and the challenges of genetic tests implementations. In the second section, common methods for genetic risk prediction models and evaluation measures will be introduced, as well as challenges in feature reliability, risk model stability, and clinical utility. In the final section, key components of genetic counseling will be introduced, covering individual communications, psychosocial concerns, risk assessments, and follow-ups. Current evidences have shown a promising future for genetic testing and risk prediction; we expect that the advancement of analytical methods, technology, integration of omics data, and the increasing clinical implementation and regulation will continue to pave the way for precision medicine in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCarthy MI, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008;9(5):356–69.

    Article  CAS  PubMed  Google Scholar 

  2. Katsanis SH, Katsanis N. Molecular genetic testing and the future of clinical genomics. Nat Rev Genet. 2013;14(6):415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scott AR. Technology: read the instructions. Nature. 2016;537(7619):S54–6.

    Article  CAS  PubMed  Google Scholar 

  4. Marino, MJ, Traboulsi EI, Genetic counseling and testing, in practical management of pediatric ocular disorders and Strabismus. Springer; 2016. pp. 329–36.

    Google Scholar 

  5. Kalf RR, et al. Variations in predicted risks in personal genome testing for common complex diseases. Genet Med. 2013;16(1):85–91.

    Article  PubMed  Google Scholar 

  6. Bloss CS, Schork NJ, Topol EJ. Effect of direct-to-consumer genomewide profiling to assess disease risk. N Engl J Med. 2011;364(6):524–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hunter DJ, Khoury MJ, Drazen JM. Letting the genome out of the bottle—will we get our wish? N Engl J Med. 2008;358(2):105–7.

    Article  CAS  PubMed  Google Scholar 

  8. Bamshad MJ, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12(11):745–55.

    Article  CAS  PubMed  Google Scholar 

  9. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51.

    Article  CAS  PubMed  Google Scholar 

  10. Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17(9):507–22.

    Article  CAS  PubMed  Google Scholar 

  11. Manolio TA, et al. Implementing genomic medicine in the clinic: the future is here. Genet Med. 2013;15(4):258–67.

    Article  PubMed  PubMed Central  Google Scholar 

  12. National Research Council (U.S.). Committee on A Framework for Developing a New Taxonomy of Disease. Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease. Washington, DC: National Academies Press (US); 2011.

    Google Scholar 

  13. Schrodi SJ, et al. Genetic-based prediction of disease traits: prediction is very difficult, especially about the future†. Front Genet. 2014;5:162.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hayes DF, et al. Personalized medicine: risk prediction, targeted therapies and mobile health technology. BMC Med. 2014;12(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Drew L. Pharmacogenetics: the right drug for you. Nature. 2016;537(7619):S60–2.

    Article  CAS  PubMed  Google Scholar 

  16. Auffray C, et al. From genomic medicine to precision medicine: highlights of 2015. Genome Med. 2016;8(1):1.

    Article  Google Scholar 

  17. Hunter DJ. Uncertainty in the era of precision medicine. N Engl J Med. 2016;375(8):711–3.

    Article  PubMed  Google Scholar 

  18. Coote JH, Joyner MJ. Is precision medicine the route to a healthy world? Lancet. 2015;385(9978):1617.

    Article  PubMed  Google Scholar 

  19. Joyner MJ, Paneth N. Seven questions for personalized medicine. JAMA. 2015;314(10):999–1000.

    Article  CAS  PubMed  Google Scholar 

  20. Roberts NJ, et al. The predictive capacity of personal genome sequencing. Sci Transl Med. 2012;4(133):133ra58.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Christensen KD, et al. Assessing the costs and cost-effectiveness of genomic sequencing. J Pers Med. 2015;5(4):470–86.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Miller CE. Genetic counseling. In: Molecular pathology in clinical practice. New York: Springer; 2016. p. 55–62.

    Chapter  Google Scholar 

  23. Sohn E. Diagnosis: a clear answer. Nature. 2016;537(7619):S64–5.

    Article  CAS  PubMed  Google Scholar 

  24. Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet. 2010;19(R2):R227–40.

    Article  CAS  PubMed  Google Scholar 

  25. Abraham G, Inouye M. Genomic risk prediction of complex human disease and its clinical application. Curr Opin Genet Dev. 2015;33:10–6.

    Article  CAS  PubMed  Google Scholar 

  26. Krier J, et al. Reclassification of genetic-based risk predictions as GWAS data accumulate. Genome Med. 2016;8(1):1.

    Article  Google Scholar 

  27. Chatterjee N, Shi J, García-Closas M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat Rev Genet. 2016;17:392–406.

    Article  CAS  PubMed  Google Scholar 

  28. Müller B, et al. Improved prediction of complex diseases by common genetic markers: state of the art and further perspectives. Hum Genet. 2016;135(3):259–72.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kong SW, et al. Summarizing polygenic risks for complex diseases in a clinical whole-genome report. Genet Med. 2014;17(7):536–44.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chatterjee N, et al. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nat Genet. 2013;45(4):400–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu J, Pfeiffer RM, Gail MH. Strategies for developing prediction models from genome-wide association studies. Genet Epidemiol. 2013;37(8):768–77.

    Article  CAS  PubMed  Google Scholar 

  32. Vilhjálmsson BJ, et al. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet. 2015;97(4):576–92.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gauderman WJ, et al. Testing association between disease and multiple SNPs in a candidate gene. Genet Epidemiol. 2007;31(5):383–95.

    Article  PubMed  Google Scholar 

  34. Wang MH, et al. A fast and powerful W-test for pairwise epistasis testing. Nucleic Acids Res. 2016;44(12):10526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shan Y, et al. Genetic risk models: model size and confidence intervals of the risk estimates. In: 63rd Annual Meeting of The American Society of Human Genetics. 2013.

    Google Scholar 

  36. Okser S, et al. Regularized machine learning in the genetic prediction of complex traits. PLoS Genet. 2014;10(11):e1004754.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kruppa J, Ziegler A, König IR. Risk estimation and risk prediction using machine-learning methods. Hum Genet. 2012;131(10):1639–54.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning : data mining, inference, and prediction, Springer series in statistics. 2nd ed. New York: Springer; 2009. xxii, 745 p

    Book  Google Scholar 

  39. Pfeiffer R, Gail M. Two criteria for evaluating risk prediction models. Biometrics. 2011;67(3):1057–65.

    Article  CAS  PubMed  Google Scholar 

  40. Steyerberg, E.W., et al., Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology (Cambridge, MA), 2010. 21(1): p. 128.

    Google Scholar 

  41. Pencina MJ, D’Agostino RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27(2):157–72.

    Article  PubMed  Google Scholar 

  42. Paulsen JS, et al. Prediction of manifest Huntington’s disease with clinical and imaging measures: a prospective observational study. Lancet Neurol. 2014;13(12):1193–201.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Walker FO. Huntington’s disease. Lancet. 2007;369(9557):218–28.

    Article  CAS  PubMed  Google Scholar 

  44. Langbehn DR, et al. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet. 2004;65(4):267–77.

    Article  CAS  PubMed  Google Scholar 

  45. Pharoah PD, et al. Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med. 2008;358(26):2796–803.

    Article  CAS  PubMed  Google Scholar 

  46. Meads C, Ahmed I, Riley RD. A systematic review of breast cancer incidence risk prediction models with meta-analysis of their performance. Breast Cancer Res Treat. 2012;132(2):365–77.

    Article  PubMed  Google Scholar 

  47. Mavaddat N, et al. Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst. 2015;107(5):djv036.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vachon CM, et al. The contributions of breast density and common genetic variation to breast cancer risk. J Natl Cancer Inst. 2015;107(5):dju397.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mega JL, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet. 2015;385(9984):2264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ripatti S, et al. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet. 2010;376(9750):1393–400.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thanassoulis G, et al. A genetic risk score is associated with incident cardiovascular disease and coronary artery calcium the Framingham heart study. Circ Cardiovasc Genet. 2012;5(1):113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ganna A, et al. Multilocus genetic risk scores for coronary heart disease prediction. Arterioscler Thromb Vasc Biol. 2013;33(9):2267–72.

    Article  CAS  PubMed  Google Scholar 

  53. Beaney KE, et al. Clinical utility of a coronary heart disease risk prediction gene score in UK healthy middle aged men and in the Pakistani population. PLoS One. 2015;10(7):e0130754.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 2013;9(3):e1003348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2012;13(2):135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu MC, et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011;89(1):82–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Madsen BE, Browning SR. A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic. PLoS Genet. 2009;5(2):e1000384.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu DJJ, Leal SM. A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS Genet. 2010;6(10):e1001156.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lee S, et al. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014;95(1):5–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marteau TM, Lerman C. Genetic risk and behavioural change. BMJ. 2001;322(7293):1056–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vassy JL, et al. Impact of literacy and numeracy on motivation for behavior change after diabetes genetic risk testing. Med Decis Mak. 2012;32(4):606–15.

    Article  Google Scholar 

  62. Grant RW, et al. Personalized genetic risk counseling to motivate diabetes prevention a randomized trial. Diabetes Care. 2013;36(1):13–9.

    Article  PubMed  Google Scholar 

  63. Evans C. An overview of genetic counselling. In: Genetic counselling: a psychological approach. Cambridge: Cambridge University Press; 2006. p. 1–16.

    Chapter  Google Scholar 

  64. Klemm SL, Fulbright J. Genetic counseling. In: Health care for people with intellectual and developmental disabilities across the lifespan. Cham: Springer; 2016. p. 731–6.

    Chapter  Google Scholar 

  65. Ormond KE. From genetic counseling to “genomic counseling”. Mol Genet Genomic Med. 2013;1(4):189–93.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shelton CA, Whitcomb DC. Evolving roles for physicians and genetic counselors in managing complex genetic disorders. Clin Transl Gastroenterol. 2015;6(11):e124.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ropers H-H. On the future of genetic risk assessment. J Community Genet. 2012;3(3):229–36.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Abul-Husn NS, et al. Implementation and utilization of genetic testing in personalized medicine. Pharmacogenomics Pers Med. 2014;7:227–40.

    Google Scholar 

  69. Harris A, Kelly SE, Wyatt S. Counseling customers: emerging roles for genetic counselors in the direct-to-consumer genetic testing market. J Genet Couns. 2013;22(2):277–88.

    Article  PubMed  Google Scholar 

  70. Wang MH, Weng H, Sun R, Lee J, Wu WK, Chong KC, Zee BC. A Zoom-Focus algorithm (ZFA) to locate the optimal testing region for rare variant association tests. Bioinformatics. 2017;33(15):2330–2336. doi:10.1093/bioinformatics/btx130.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maggie Haitian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Wang, M.H., Weng, H. (2017). Genetic Test, Risk Prediction, and Counseling. In: Shen, B. (eds) Translational Informatics in Smart Healthcare. Advances in Experimental Medicine and Biology, vol 1005. Springer, Singapore. https://doi.org/10.1007/978-981-10-5717-5_2

Download citation

Publish with us

Policies and ethics