Skip to main content

Applied Aspect of Microalgae in Monitoring of Heavy Metals

  • Chapter
  • First Online:
Mining of Microbial Wealth and MetaGenomics

Abstract

Microalgae which forms the primary energy in any aquatic ecosystem plays great role in the food chain. Heavy metal enters into the aquatic system by the way of various anthropogenic, natural weathering, mining, smelting, and industrial activities. The transport of heavy metals into algae comprises two phases: metabolism-independent phase (enter via surface binding of physicochemical nature into cell) and a metabolism-dependent phase (metal ions are transported from one side to the other of the cell membrane to the cell). Metal sorption by algal cells may be influenced by many environmental factors such as pH, temperature, conductivity, dissolved oxygen, etc. Heavy metal affects the growth and physiology of algae either by attaching to sulfhydryl group proteins or the distraction of protein structure. Modifications in cell size or morphology are general symptoms of heavy metal toxicity in microalgae. However luxurious growth and bioconcentration of heavy metals indicate the use of microalgae in bioremediation. With the benefits of large accumulation capacity and no other secondary pollution, growth of unknown species in natural habitat, algae are very promising for monitoring the wastewater containing heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affenzeller MJ, Darehshouri A, Andosch A, Lütz C, Lütz-Meindl U (2009) Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J Exp Bot 60:939–954. doi:10.1093/jxb/ern348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afkar E, Ababna H and Fathi AA (2010) Toxicological Response of the Green Alga Chlorella vulgaris, to Some Heavy Metals. Am J Environ Sci 6:230–237. doi:10.3844/ajessp.2010.230.237

  • Andosch A, Affenzeller MJ, Lütz C, Lütz-Meindl U (2012) A freshwater green alga under cadmium stress: ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. J Plant Physiol 169:1489–1500. doi:10.1016/j.jplph.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  • Báscik-Remisiewicz A, Tomaszewska E, Labuda K, Tukaj Z (2009) The effect of Zn and Mn on the toxicity of Cd to the green microalga Desmodesmus armatus cultured at ambient and elevated (2%) CO2 concentrations. Pol J Environ Stud 18:775–780

    Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212. doi:10.1016/S1369-5274(03)00059-6

    Article  CAS  PubMed  Google Scholar 

  • Bielen A, Remans T, Vangronsveld J, Cuypers A (2013) The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions. Int J Mol Sci 14:6382–6413. doi:10.3390/ijms14036382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branzini A, Gonzalez RS, Zubillaga M (2012) Absorption and translocation of copper, zinc and chromium by Sesbania virgata. J Environ Manag 102:50–54. doi:10.1016/j.jenvman.2012.01.033

    Article  CAS  Google Scholar 

  • Carfagna S, Lanza N, Salbitani G, Basile A, Sorbo S, Vona V (2013) Physiological and morphological responses of Lead or Cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae). Springerplus 2:147. doi:10.1186/2193-1801-2-147

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaoyang W, Cheng W, Linsheng Y (2009) Characterizing spatial distribution and sources of heavy metals in the soils from mining-smelting activities in Shuikoushan, Hunan Province, China. J Environ Sci 21:1230–1236. doi:10.1016/S1001-0742(08)62409-2

    Article  Google Scholar 

  • Cheng S (2003) Heavy metals in plants and phytoremediation. Environ Sci Pollut Res 10:335–340. doi:10.1065/espr2002.11.141.3

    Article  CAS  Google Scholar 

  • Dadrasnia A, Wei KSC, Shahsavari N, Azirun MS, Ismail S (2015) Biosorption potential of Bacillus salmalaya strain 139SI for removal of Cr(VI) from aqueous solution. Int J Environ Res Public Health 12:15321–15338. doi:10.3390/ijerph121214985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franca S, Vinagre C, Cacador I, Cabral HN (2005) Heavy metal concentrations in sediment, benthic invertebrates and fish in three salt marsh areas subjected to different pollution loads in the Tagus Estuary (Portugal). Mar Pollut Bull 50:998–1003. doi:10.1016/j.marpolbul.2005.06.040

    Article  CAS  PubMed  Google Scholar 

  • Franklin NM, Stauber JL, Markich SJ, Lim RP (2000) pH dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.) Aquat Toxicol 48:275–289. doi:10.1016/s0166-445x(99)00042-9

    Article  CAS  PubMed  Google Scholar 

  • Fritioff A, Kautsky L, Greger M (2005) Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ Pollut 133:265–274. doi:10.1016/j.envpol.2004.05.036

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez JC, Amaro F, Gonzalez AM (2015) Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review. Front Microbiol 6:48. doi:10.3389/fmicb.2015.00048

    PubMed  PubMed Central  Google Scholar 

  • Jaiswar S, Kazi MA, Mehta S (2015) Biomonitoring of heavy metals using freshwater algal species of Bhavnagar, Gujarat. J Environ Biol 36:1361–1366

    CAS  PubMed  Google Scholar 

  • Jamers A, Blust R, De Coen W, Griffin JL, Jones OAH (2013) An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 126:355–364. doi:10.1016/j.aquatox.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  • Javed M (2006) Studies on metal contamination levels in plankton and their role as biological indicator of water pollution in the River Ravi. Pak J Biol Sci 9:313–317. doi:10.3923/pjbs.2006.313.317

    Article  CAS  Google Scholar 

  • Jena M, Ratha SK, Adhikary SP (2005) Algal diversity changes in Kathajodi River after receiving sewage of Cuttack and its ecological implications. Indian Hydrobiol 8:67–74

    Google Scholar 

  • Kallqvist T (2009) Effect of water hardness on the toxicity of cadmium to the green alga Pseudokirchneriella subcapitata in an artificial growth medium and nutrient-spiked natural lake waters. J Toxicol Environ Health A 72:277–283. doi:10.1080/15287390802539368

    Article  PubMed  Google Scholar 

  • Karikari AY, Bernasko JK, Bosque-Hamilton EKA (2007) An assessment of water quality of Angaw River in Southeastern Coastal Plains of Ghana. West Afr J Appl Ecol 11:77–87. doi:10.4314/wajae.v11i1.45728

    Google Scholar 

  • Karman SB, Diah ZM, Gebeshuber IC (2015) Raw materials synthesis from heavy metal industry effluents with bioremediation and phytomining: a biomimetic resource management approach. doi:10.1155/2015/185071

  • Karyn LW, Jennifer LS, Scott JM, Natasha MF, Paul LB (2006) The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp.) Arch Environ Contam Toxicol 51:174–185. doi:10.1007/s00244-004-0256-0

    Article  Google Scholar 

  • Kovacik J, Klejdus B, Hedbavny J, Backor M (2010) Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae). Plant Sci 178(3):307–311. doi:10.1016/j.plantsci.2010.01.009

    Article  CAS  Google Scholar 

  • Kumar SD, Santhanam P, Ananth S, Devi SA, Nandakumar R, Prasath BB, Jeyanthi S, Jayalakshmi T, Ananthi P (2014) Effect of different dosages of zinc on the growth and biomass in five marine microalgae. Int J Fish Aquac 6:1–8. doi:10.5897/IJFA2013.0393

    Article  Google Scholar 

  • Lasat MM (2002) Reviews and analyses: phytoextraction of toxic metals—a review of biological mechanisms. J Environ Qual 31:109–120. doi:10.1111/j.1365-3040.2011.02338.x

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane GR, Burchett MD (2001) Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the Grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull 42:233–240. doi:10.1016/s0025-326x(00)00147-8

    Article  CAS  PubMed  Google Scholar 

  • Macfie SM, Tarmohamed Y, Welbourn PM (1994) Effects of cadmium, cobalt, copper and nickel on growth of the green alga Chlamydomonas reinhardtii: the influence of cell wall and pH. Arch Environ Contam Toxicol 27:454–458. doi:10.1007/bf00214835

    Article  CAS  Google Scholar 

  • Machado MD, Soares EV (2013) Optimization of a microplate-based assay to assess esterase activity in the alga Pseudokirchneriella subcapitata. Water Air Soil Pollut 224:1–11. doi:10.1007/s11270-012-1358-3

    Article  CAS  Google Scholar 

  • Machado MD, Soares EV (2014) Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress. Aquat Toxicol 147:1–6. doi:10.1016/j.aquatox.2013.11.017

    Article  CAS  PubMed  Google Scholar 

  • Machado MD, Soares EV (2015) Use of a fluorescence-based approach to assess short-term responses of the alga Pseudokirchneriella subcapitata to metal stress. J Appl Phycol 27:805–813. doi:10.1007/s10811-014-0351-1

    Article  CAS  Google Scholar 

  • Machado MD, Lopes AR, Soares EV (2015) Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress. J Hazard Mater 296:82–92. doi:10.1016/j.jhazmat.2015.04.022

    Article  CAS  PubMed  Google Scholar 

  • Monteiro CM, Fonseca SC, Castro PML, Malcata FX (2011) Toxicity of cadmium and zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from Northern Portugal. J Appl Phycol 23:97–103. doi:10.1007/s10811-010-9542-6

    Article  CAS  Google Scholar 

  • Muhaemin M (2004) Toxicity and bioaccumulation of lead in Chlorella and Dunaliella. J Coast Dev 8:27–33

    Google Scholar 

  • Muley DV, Kamble GB, Bhilave MP (2000) Effect of heavy metals on nucleic acids in Cyprinus carpio. J Environ Biol 21:367–370

    CAS  Google Scholar 

  • Mustapha MU, Halimoon N (2015) Microorganisms and biosorption of heavy metals in the environment: a review paper. Microb Biochem Technol 7:5. doi:10.4172/1948-5948.1000219

    Article  Google Scholar 

  • Narula P, Mahajan A, Gurnani C, Kumar V, Mukhija S (2015) Microalgae as an indispensable tool against heavy metals toxicity to plants: a review. Int J Pharm Sci Rev Res 31:86–93

    CAS  Google Scholar 

  • Okamoto OK, Asano CS, Aidar E, Colepicolo P (1996) Effects of cadmium on growth and superoxide dismutase activity of the marine microalga Tetraselmis gracilis. J Phycol 32:74–79. doi:10.1111/j.0022-3646.1996.00074.x

    Article  CAS  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2009) Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma 236:85–95. doi:10.1007/s00709-009-0061-8

    Article  CAS  PubMed  Google Scholar 

  • Prabha Y, Soni SK, Gupta S, Sonal (2016) Potential of algae in bioremediation of wastewater: current research. Int J Curr Microbiol Appl Sci 5(2):693–700. doi:10.20546/ijcmas.2016.502.076

    Article  Google Scholar 

  • Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and perspectives. J Biochem Technol 3(3):299–304

    CAS  Google Scholar 

  • Qian H, Li J, Sun L, Chen W, Sheng DG, Liu W, Fu Z (2009) Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat Toxicol 94:56–61. doi:10.1016/j.aquatox.2009.05.014

    Article  CAS  PubMed  Google Scholar 

  • Rajamani S (2006) Small molecule signaling and detection systems in protists and bacteria. PhD Thesis, The Ohio State University

    Google Scholar 

  • Shanab S, Essa A, Shalaby E (2012) Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates). Plant Signal Behav 7:1–8. doi:10.4161/psb.19173

    Article  Google Scholar 

  • Shehata SA, Lasheen MR, Kobbia IA, Ali GH (1999) Toxic effect of certain metals mixture on some physiological and morphological characteristics of freshwater algae. Water Air Soil Pollut 110:119–135. doi:10.1023/a:1005058607002

    Article  CAS  Google Scholar 

  • Soto P, Gaete H, Hidalgo ME (2011) Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Lat Am J Aquat Res 39:280–285. doi:10.3856/vol39-issue2-fulltext-9

    Article  Google Scholar 

  • Szivak I, Behra R, Sigg L (2009) Metal-induced reactive oxygen species production in Chlamydomonas Reinhardtii (Chlorophyceae). J Phycol 45:427–435. doi:10.1111/j.1529-8817.2009.00663.x

    Article  CAS  PubMed  Google Scholar 

  • Taskila S, Leiviskä T, Haapalainen OP, Tanskanen J (2015) Utilization of industrial microbe side streams for biosorption of heavy metals from wastewaters. J Bioremed Biodegr 6:285. doi:10.4172/2155-6199.1000285

    Google Scholar 

  • TopcuoÄŸlu S, Kılıç O, BelivermiÅŸ M, Ergül HA, Kalayci G (2010) Use of marine algae as biological indicator of heavy metal pollution in Turkish marine environment. J Black Sea/Mediterr Environ 16:43–52

    Google Scholar 

  • Vannini C, Marsoni M, Domingo G, Antognoni F, Biondi S, Bracale M (2009) Proteomic analysis of chromate-induced modifications in Pseudokirchneriella subcapitata. Chemosphere 76:1372–1379. doi:10.1016/j.chemosphere.2009.06.022

    Article  CAS  PubMed  Google Scholar 

  • Verma AK, Saksena DN (2010) Influence of pollutants on bottom sediment of sewage collecting Kalpi (Morar) River, Gwalior, Madhya Pradesh (MP). J Toxicol Environ Health 2:38–49

    CAS  Google Scholar 

  • Volland S, Andosch A, Milla M, Stöger B, Lütz C, Lütz-Meindl U (2011) Intracellular metal compartmentalization in the green algal model system Micrasterias denticulata (Streptophyta) measured by transmission electron microscopy-coupled electron energy loss spectroscopy. J Phycol 47(3):565–579. doi:10.1111/j.1529-8817.2011.00988.x

    Article  CAS  PubMed  Google Scholar 

  • Volland S, Lütz C, Michalke B, Lütz-Meindl U (2012) Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias. Aquat Toxicol 109:59–69. doi:10.1016/j.aquatox.2011.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volland S, Schaumlöffel D, Wesenberg D, Krauss G-J, Lütz-Meindl U (2013) Identification of phytochelatins in the cadmium-stressed conjugating green alga Micrasterias denticulata. Chemosphere 91:448–454. doi:10.1016/j.chemosphere.2012.11.064

    Article  CAS  PubMed  Google Scholar 

  • Volland S, Bayer E, Baumgartner V, Andosch A, Lütz C, Sima E, Lütz-Meindl U (2014) Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J Plant Physiol 171:154–163. doi:10.1016/j.jplph.2013.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SZ, Zhang DY, Pan XL (2013) Effects of cadmium on the activities of photosystems of Chlorella pyrenoidosa and the protective role of cyclic electron flow. Chemosphere 93:230–237. doi:10.1016/j.chemosphere.2013.04.070

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Xiao H, Xiao B, Xu W, Gao L, Lin G (2015) Bioremediation of heavy metal contaminated aqueous solution by using red algae Porphyra leucosticta. Water Sci Technol 72(9):16626. doi:10.2166/wst.2015.386

    Article  Google Scholar 

  • Zaccolo M (2004) Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ Res 94:866–873. doi:10.1161/01.res.0000123825.83803.cd

    Article  CAS  PubMed  Google Scholar 

  • Zutshi B, Raghuprasad SG (2008) Impact of pollution on fresh and marine water resources. Pollut Res 27:461–466

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santlal Jaiswar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jaiswar, S., Chauhan, P.S. (2017). Applied Aspect of Microalgae in Monitoring of Heavy Metals. In: Kalia, V., Shouche, Y., Purohit, H., Rahi, P. (eds) Mining of Microbial Wealth and MetaGenomics. Springer, Singapore. https://doi.org/10.1007/978-981-10-5708-3_23

Download citation

Publish with us

Policies and ethics