Abstract
Current agricultural practices demand for low-input technologies with an objective to scale down the synthetic fertilizers and pesticides usage in order to enhance the sustainability in food production and restore ecosystem functioning. Regardless of much understanding of the essential role played by the soil microbiome in agriculture, we still have a limited knowledge of the multifarious response of microbial heterogeneity. To explore this covert attribute of soil microbial diversity, there is a need to focus upon the infinite ways by virtue of which soil microbiome helps in sustainable agriculture. There is limited access to highly diverse and dynamic communities of microbiome in soil due to inability of culture techniques in laboratory. With the advent of next-generation sequencing (NGS) techniques and high-throughput analysis, researchers gained new opportunities to investigate undetermined composition of soil microorganisms. Among rapidly growing field of research, the role of metagenomics is crucial in studying uncultured microbes to comprehend the actual microbial diversity and pertinent cooperation, evolution, and functions in diverse environment. Soil microbiologists are putting efforts in analyzing the phylogenetic diversity of soil niches and subsequently attempting to describe the functions of these soil inhabitants at trophic levels for improvement of soil fertility and productivity for the future generation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886. doi:10.1139/w08-081
Aguirre-Garrido JF, Montiel-Lugo D, Rodríguez CH, Torres-Cortes G, Millán V, Toro N, Abarca FM, Ramírez-Saad HC (2012) Bacterial community structure in the rhizosphere of three cactus species from semi-arid highlands in central Mexico. Antonie Van Leeuwenhoek 101:891–904. doi:10.1007/s10482-012-9705-3
Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181. doi:10.1016/j.micres.2006.04.001
Alabouvette C, Hoper H, Lemanceau P, Steinberg C (1996) Soil suppressiveness to diseases induced by soil-borne plant pathogens. In: Stotzky G, Bollag JM (eds) Soil biochemistry. Marcel Dekker, New York, pp 371–413
Alagawadi AR, Gour AC (1988) Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105:241–246. doi:10.1007/bf02376788
Amellal N, Burtin G, Bartoli F, Heulin T (1998) Colonization of wheat roots by an exopolysaccharide producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Appl Environ Microbiol 64:3740–3747
Aroca R, Porcel R, Ruiz Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43–57. doi:10.1093/jxb/err266
Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085
Atamna IN, Finkel OM, Glaser F, Sharon I, Schneider R, Post AF (2012) Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ Microbiol 14:140–146. doi:10.1111/j.1462-2920.2011.02554
Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156. doi:10.1094/MPMI.2002.15.11.1147
Azcón R, Barea JM (2010) Mycorrhizosphere interactions for legume improvement. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer, Vienna, pp 237–271
Babana AH, Antoun H (2006) Effect of Tilemsi phosphate rock solubilizing microorganisms on phosphorus uptake and yield of field grown wheat (Triticum aestivum L.) in Mali. Plant Soil 287:51–58. doi:10.1007/s11104-006-9060-0
Bardi L, Malusà E (2012) Drought and nutritional stresses in plant: alleviating role of rhizospheric microorganisms. In: Haryana N, Punj S (eds) Abiotic stress: new research. Nova Science, Hauppauge, pp 1–57
Barea JM, Pozo MJ, Azcón R, Azcón Aguilar C (2013) Microbial interactions in the rhizosphere. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, Hoboken, pp 29–44
Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285. doi:10.1016/j.ecolecon.2007.03.004
Barzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant-Microbe Interact 27:349–363. doi:10.1094/MPMI-09-13-0268-R
Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. doi:10.1007/s11104-013-1956-x
Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18. doi:10.1007/s00253-009-2092-7
Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. doi:10.1007/s11274-011-0979-9
Borie F, Rubio R, Morales A, Curaqueo G, Cornejo P (2010) Arbuscular mycorrhizae in agricultural and forest ecosystems in Chile. J Soil Sci Plant Nutr 10:185–206. doi:10.4067/S0718-95162010000100001
Brodie EL, DeSantis TZ, Parker JP, Zubietta IX, Piceno YM, Andersen GL (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci U S A 104:299. doi:10.1073/pnas.0608255104
de Bruijn FJ (2011) Handbook of molecular microbial ecology I: metagenomics and complementary approaches. Wiley, Hoboken
Buée M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212. doi:10.1007/s11104-009-9991-3
Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95. doi:10.1038/nature11336
Bulgarelli D, Oter RG, McHardy AC, Lefert PS (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403. doi:10.1016/j.chom.2015.01.011
Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41. doi:10.1007/s11104-014-2131-8
Calvo-Polanco M, Sánchez-Romera B, Aroca R (2013) Arbuscular mycorrhizal fungi and the tolerance of plants to drought and salinity. In: Aroca R (ed) Symbiotic endophytes. Springer, Berlin, pp 271–288
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. doi:10.1038/ismej.2012.8
Carvalhais LC, Dennis PG, Tyson GW, Schenk PM (2013) Rhizosphere metatranscriptomics: challenges and opportunities. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, Hoboken, pp 1137–1144. ISBN: 978-0-470-64479-9
Chaudhry V, Rehman A, Mishra A, Chauhan PS, Nautiyal CS (2012) Changes in bacterial community structure of agricultural land due to long term organic and chemical amendments. Microb Ecol 64:450–460. doi:10.1007/s00248-012-0025-y
Chauhan PS, Chaudhry V, Mishra S, Nautiyal CS (2011) Uncultured bacterial diversity in tropical maize (Zea mays L.) rhizosphere. J Basic Microbiol 51:15–32. doi:10.1002/jobm.201000171
Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726
Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693. doi:10.1128/AEM.71.4.1685-1693.2005
De Angelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK (2009) Selective progressive response of soil microbial community to wild oat roots. ISME J 3:168–178. doi:10.1038/ismej.2008.103
De Roy K, Marzorati M, Van den Abbeele P, Van de Wiele T, Boon N (2013) Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. Environ Microbiol 16:1472–1481. doi:10.1111/1462-2920.12343
Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433. doi:10.1073/pnas.0905240106
Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2014) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17:610–621. doi:10.1111/1462-2920.12452
Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11. doi:10.1016/S0929-1393(00)00067-6
Downey J, van Kessel C (1990) Dual inoculation of Pisum sativum with Rhizobium leguminosarum and Penicillium bilaji. Biol Fertil Soils 10:194–196. doi:10.1007/bf00336135
Duijff BJ, Bakker PAHM, Schippers B (1994) Suppression of Fusarium wilt of carnation by Pseudomonas putida WCS358 at different levels of disease incidence and iron availability. Biocontrol Sci Tech 4:279–288. doi:10.1080/09583159409355336
Dunne C, Crowley JJ, Moënne-Loccoz Y, Dowling DN, de Bruijn FJ, O’Gara F (1997) Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143:3921–3391. doi:10.1099/00221287-143-12-3921
Egamberdieva D, Jabborova D, Berg G (2016) Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, nodulation and nutrition of soybean under salt stress. Plant Soil 405:35. doi:10.1007/s11104-015-2661-8
Eilers KG, Lauber CL, Knight R, Fierer N (2010) Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol Biochem 42:896–903. doi:10.1016/j.soilbio.2010.02.003
El-Tarabily KA (2006) Rhizosphere competent isolates of Streptomycete and non-streptomycete Actinomycetes capable of producing cell-wall degrading enzymes to control Pythium aphanidermatum damping off disease of cucumber. Can J Bot 84:211–222. doi:10.1139/b05-153
El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase producing streptomycete Actinomycetes. Plant Soil 308:161–174. doi:10.1007/s11104-008-9616-2
Frankowski J, Lorito M, Scala F, Schmidt R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426. doi:10.1007/s002030100347
Gamalero E, Lingua G, Berta G, Lemanceau P (2009) Methods for studying root colonization by introduced beneficial bacteria. In: Lichtfouse E, Navarrete M, Debaeke P, Souchere V, Alberola C (eds) Sustainable agriculture. Springer, New York, pp 601–615. doi:10.1007/978-90-481-2666-8_37
Gloor GB, Hummelen R, Macklaim JM, Dickson RJ, Fernandes AD, MacPhee R, Reid G (2010) Microbiome profiling by illumina sequencing of combinatorial sequence-tagged PCR products. PLoS One 5:e15406. doi:10.1371/journal.pone.0015406
Groppa MD, Benavides MP, Zawoznik MS (2012) Root hydraulic conductance, aquaporins and plant growth promoting microorganisms: a revision. Appl Soil Ecol 61:247–254. doi:10.1016/j.apsoil.2011.11.013
van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi:10.1111/j.1461-0248.2007.01139.x
van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. doi:10.1111/nph.13288
Hirsch PR, Mauchline TH, Clark IM (2010) Culture independent molecular techniques for soil microbial ecology. Soil Biol Biochem 42:878–887. doi:10.1016/j.soilbio.2010.02.019
Howie WJ, Cook RJ, Weller DM (1987) Effects of soil matrix potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology 77:286–292
Jeffries P, Barea JM (2012) Arbuscular mycorrhiza—a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The Mycota, a comprehensive treatise on fungi as experimental systems for basic and applied research. Springer, Berlin, pp 51–75
Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16. doi:10.1007/s00374-002-0546-5
Johnson KB (2010) Pathogen refuge: a key to understanding biological control. Annu Rev Phytopathol 48:141–160. doi:10.1146/annurev.phyto.112408.132643
Jung SC, Martinez-Medina A, Lopez Raez JA, Pozo MJ (2012) Mycorrhiza induced resistance and priming of plant defences. J Chem Ecol 38:651–664. doi:10.1007/s10886-012-0134-6
Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655. doi:10.1007/s11274-008-9933-x
Khan MH, Meghvansi MK, Gupta R, Chaudhary KK, Prasad K, Siddiqui S, Veer V, Varma A (2015) Combining application of vermiwash and Arbuscular Mycorrhizal fungi for effective plant disease suppression. In: Varma A, Meghvansi MK (eds) Organic amendments and soil suppressiveness in plant disease management. Springer, Basel, pp 479–493. doi:10.1007/978-3-319-23075-7_23
Klein E, Ofek M, Katan J, Minz D, Gamliel A (2013) Soil suppressiveness to Fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization. Phytopathology 103:23–33. doi:10.1094/PHYTO-12-11-0349
Kumar BSD (1999) Fusarial wilt suppression and crop improvement through two rhizobacterial strains in chick pea growing in soils infested with Fusarium oxysporum f. sp. ciceris. Biol Fertil Soils 29:87–91. doi:10.1007/s003740050529
Kumar M, Mishra S, Dixit V, Kumar M, Agarwal L, Chauhan PS, Nautiyal CS (2016) Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.) Plant Signal Behav 11:e1071004. doi:10.1080/15592324.2015.1071004
Landa BB, Mavrodi OV, Raaijmakers JM, McSpadden-Gardener BB, Thomashow LS, Weller DM (2002) Differential ability of genotypes of 2,4-diacetylphloroglucinol producing Pseudomonas fluorescens to colonize the roots of pea. Appl Environ Microbiol 68:3226–3237. doi:10.1128/AEM.68.7.3226-3237.2002
Li X, Rui J, Xiong J, Li J, He Z, Zhou J, Anthony C, Yannarell MR (2014) Functional potential of soil microbial communities in the maize rhizosphere. PLoS One 9:e112609. doi:10.1371/journal.pone.0112609
Lisette JXC, Germida JJ (2003) Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition. Biol Fertil Soils 37:261–267. doi:10.1007/s00374-003-0605-6
Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13
López-Ráez JA, Bouwmeester H, Pozo MJ (2012) Communication in the rhizosphere, a target for pest management. In: Lichtfouse E (ed) Agroecology and strategies for climate change. Springer, Dordrecht, pp 109–133. doi:10.1007/978-94-007-1905-7_5
Lugtenberg B (2015) Life of microbes in the rhizosphere. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Heidelberg, pp 7–15. doi:10.1007/978-3-319-08575-3_3
Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. doi:10.1038/nature11237
Malusà E, Vassilev N (2014) A contribution to set a legal framework for biofertilizers. Appl Microbiol Biotechnol 98:6599–6607. doi:10.1007/s00253-014-5828-y
Malusa E, Sas-Paszt L, Popinska W, Zurawicz E (2007) The effect of a mycorrhiza-bacteria substrate and foliar fertilization on growth response and rhizosphere pH of three strawberry cultivars. Int J Fruit Sci 6:25–41. doi:10.1126/science.1203980
Marques JM, da Silva TF, Vollu RE, Blank AF, Ding GC, Seldin L, Smalla K (2014) Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants. FEMS Microbiol Ecol 88:424–435. doi:10.1111/1574-6941.12313
Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Anderson GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. doi:10.1126/science.1203980
Meziane H, Van der Sluis I, Van Loon LC, Höfte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185. doi:10.1111/j.1364-3703.2005.00276.x
Micallef SA, Channer S, Shiaris MP, Colón-Carmona A (2009) Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal Behav 4:777–780. doi:10.4161/psb.4.8.9229
Michiels KW, Croes CL, Vanderleyden J (1991) Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137:2241–2246. doi:10.1099/00221287-137-9-2241
Nautiyal CS, Chauhan PS, Bhatia CR (2010) Changes in soil physicochemical properties and microbial functional diversity due to 14 years of conversion of grassland to organic agriculture in semi-arid agro-ecosystem. Soil Tillage Res 109:55–60. doi:10.1016/j.still.2010.04.008
Nichols D (2007) Cultivation gives context to the microbial ecologist. FEMS Microbiol Ecol 60:351–357. doi:10.1111/j.1574-6941.2007.00332.x
Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Défago G (2001) Biotic factors affecting expression of the 2, 4-diacetylphloroglucinol biosynthesis gene phl A in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881. doi:10.1094/PHYTO.2001.91.9.873
Nunes da Rocha U, Andreote FD, De Azevedo JL, Van Elsas JD, Van Overbeek LS (2010) Cultivation of hitherto-uncultured bacteria belonging to the Verrucomicrobia subdivision 1 from the potato (Solanum tuberosum L.) rhizosphere. J Soils Sediments 10:326–339. doi:10.1007/s11368-009-0160-3
Osorio NW, Habte M (2001) Synergistic influence of an arbuscular mycorrhizal fungus and P solubilizing fungus on growth and plant P uptake of Leucaena leucocephala in an Oxisol. Arid Land Res Manag 15:263–274. doi:10.1080/15324980152119810
Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54. doi:10.1016/j.apsoil.2014.09.012
Pace NR, Sapp J, Goldenfeld N (2012) Phylogeny and beyond: scientific, historical, and conceptual significance of the first tree of life. Proc Natl Acad Sci U S A 109:1011–1018. doi:10.1073/pnas.1109716109
Pangesti N, Pineda A, Pieterse CMJ, Dicke M, van Loon JJA (2013) Two-way plant-mediated interactions between root-associated microbes and insects: from ecology to mechanisms. Front Plant Sci 4:414. doi:10.3389/fpls.2013.00414
Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610. doi:10.1111/j.1469-8137.2006.01931.x
Pérez-García A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193. doi:10.1016/j.copbio.2010.12.003
Perotto S, Bonfante P (1997) Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends Microbiol 5:496–501. doi:10.1016/s0966-842x(97)01154-2
Phelan VV, Liu WT, Pogliano K, Dorrestein PC (2012) Microbial metabolic exchange—the chemotype phenotype link. Nat Chem Biol 8:26–35. doi:10.1038/nchembio.739
Pozo MJ, Azcón Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398. doi:10.1016/j.pbi.2007.05.004
Pozo MJ, Jung SC, Martínez-Medina A, López-Ráez JA, Azcón-Aguilar C, Barea JM (2013) Root allies: arbuscular mycorrhizal fungi help plants to cope with biotic stresses. In: Aroca R (ed) Symbiotic endophytes. Springer, Berlin, pp 289–307. doi:10.1007/978-3-642-39317-4_15
Pozo MJ, López-Ráez JA, Azcón-Aguilar C, García-Garrido JM (2015) Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol 205:1431–1436. doi:10.1111/nph.13252
Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol producing Pseudomonas spp. in take-all decline soils. Mol Plant-Microbe Interact 11:144–152
Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soil borne pathogens and beneficial microorganisms. Plant Soil 321:341–361. doi:10.1007/s11104-008-9568-6
Ram RJ, VerBerkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC II, Shah M, Hettich RL, Banfield JF (2005) Community proteomics of a natural microbial biofilm. Science 308:1915–1920. doi:10.1126/science. 1109070
Rice WA, Lupwayi NZ, Olsen PE, Schlechte D, Gleddie SC (2000) Field evaluation of dual inoculation of alfalfa with Sinorhizobium meliloti and Penicillium bilaii. Can J Plant Sci 80:303–308. doi:10.4141/p99-055
Ritz K (2007) The plate debate: cultivable communities have no utility in contemporary environmental microbial ecology. FEMS Microbiol Ecol 60:358–362. doi:10.1111/j.1574-6941.2007.00331.x
Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044. doi:10.1093/jxb/ers126
Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota, phylogeny and evolution. Mycol Res 105:1413–1421. doi:10.1017/S0953756201005196
Selosse MA, Bessis A, Pozo MJ (2014) Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends Microbiol 22:607–613. doi:10.1016/j.tim.2014.07.003
Sergeeva E, Hirkala DLM, Nelson LM (2007) Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates. Plant Soil 297:1–13. doi:10.1007/s11104-007-9314-5
Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36. doi:10.1094/MPMI-08-11-0204
Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353. doi:10.1016/j.agee.2011.01.017
Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant-associated microbes. Annu Rev Phytopathol 37:473–491
Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, New York
Someya N, Tsuchiya K, Yoshida T, Noguchi MT, Akutsu K, Sawada H (2007) Co-inoculation of an antibiotic-producing bacterium and a lytic enzyme-producing bacterium for the biocontrol of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. Biocontrol Sci 12:1–6. doi:10.4265/bio.12.1
de Souza JTA, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003) Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975. doi:10.1094/PHYTO.2003.93.8.966
Spence C, Alff E, Johnson C, Ramos C, Donofrio N, Sundaresan V, Bais H (2014) Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol 14:130. doi:10.1186/1471-2229-14-130
Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. CRC Crit Rev Plant Sci 19:1–30. doi:10.1080/07352680091139169
Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K (2014) Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS One 9:e100709. doi:10.1371/journal.pone.0100709
Taberlet P, Prud’homme SM, Campione E, Roy J, Miquel C, Shehzad W, Gielly L, Rioux D, Choler P, Clément JC, Melodelima C, Pompanon F, Coissac E (2012) Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol Ecol 21:1816–1820. doi:10.1111/j.1365-294X.2011.05317.x
Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508
Uroz S, Buée M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2:281–288. doi:10.1111/j.1758-2229.2009.00117.x
Van Loon LC, Bakker PAHM (2003) Signalling in rhizobacteria-plant interactions. In: De Kroon H, Visser EJW (eds) Root ecology (Ecological studies). Springer, Berlin, pp 297–330. doi:10.1007/978-3-662-09784-7_12
Vassilev N, Franco I, Vassileva M, Azcon R (1996) Improved plant growth with rock phosphate solubilized by Aspergillus niger grown on sugar beet waste. Bioresour Technol 55:237–241. doi:10.1016/0960-8524(96)00008-9
Vassilev N, Medina A, Azcon R, Vassileva M (2006) Microbial solubilization of rock phosphate media containing agro-industrial wastes and effect of the resulting products on plant growth and P uptake. Plant Soil 287:77–84. doi:10.1007/s11104-006-9054-y
Vassilev N, Martos E, Mendes G, Martos V, Vassileva M (2013) Biochar of animal origin: a sustainable solution of the high grade rock phosphate scarcity? J Sci Food Agric 93:1799–1804. doi:10.1002/jsfa.6130
Velazhahan R, Samiyappan R, Vidhyasekaran P (1999) Relationship between antagonistic activities of Pseudomonas fluorescens isolates against Rhizoctonia solani and their production of lytic enzymes. Z Pflanz Pflanzen 106:244–250
Wang HX, Geng ZL, Zeng Y, Shen YM (2008) Enriching plant microbiota for a metagenomic library construction. Environ Microbiol 10:2684–2691. doi:10.1111/j.1462-2920.2008.01689.x
Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181. doi:10.1007/s00572-010-0319-1
Weinert N, Piceno Y, Ding GC, Meincke R, Heuer H, Berg G, Schloter M, Andersen G, Smalla K (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506. doi:10.1111/j.1574-6941.2010.01025.x
Weller DM, Cook RJ (1983) Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463–469
Woeng TFCCA, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato root rot. Mol Plant-Microbe Interact 12:1340–1345. doi:10.1094/MPMI.2000.13.12.1340
Woeng TFCCA, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523. doi:10.1046/j.1469-8137.2003.00686.x
Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166. doi:10.1016/j.geoderma.2004.07.003
Zachow C, Müller H, Tilcher R, Berg G (2014) Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima—ancestor of all beet crops and modern sugar beets. Front Microbiol 5:415. doi:10.3389/fmicb.2014.00415
Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D, Gilberta JA (2015) The soil microbiome influences grapevine-associated microbiota. mBio 6:e02527-14. doi:10.1128/mBio.02527-14
Zolla G, Badri DV, Bakker MG, Manter DK, Vivanco JM (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9. doi:10.1016/j.apsoil.2013.03.007
Acknowledgments
The study was supported by New Initiative (as a Cross Flow Technology project) “Root Biology and Its Correlation to Sustainable Plant Development and Soil Fertility” (RootSF; BSC0204) from the Council of Scientific and Industrial Research (CSIR), New Delhi, India.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Misra, S. et al. (2017). Soil Microbiome for Enhanced Crop Productivity. In: Kalia, V., Shouche, Y., Purohit, H., Rahi, P. (eds) Mining of Microbial Wealth and MetaGenomics. Springer, Singapore. https://doi.org/10.1007/978-981-10-5708-3_14
Download citation
DOI: https://doi.org/10.1007/978-981-10-5708-3_14
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-5707-6
Online ISBN: 978-981-10-5708-3
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)