Skip to main content

Marine Sponge-Associated Microbiome: Reservoir of Novel Bioactive Compounds

  • Chapter
  • First Online:
Mining of Microbial Wealth and MetaGenomics

Abstract

Oceans consist of around half a million to ten million species out of which sponges, being the oldest and almost omnipresent of the marine metazoans, make an integral part of marine benthic biodiversity and play an important role in benthic–pelagic coupling. Sponges are the most popular invertebrate microbial hosts of today. A symbiotic relationship between the two is predicted. Sponge-associated microbes in league with the sponges themselves are believed to produce a large array of bioactive compounds. However, the true origin of most of these compounds is still ambiguous and remains a key issue in further developmental stages of biotechnological applications. Also most of the microorganisms associated with marine sponges remain so far uncultivable. Today, with advances in the molecular biology techniques, nearly complete microbial diversity can be accessed for understanding diversity and abundance within the microbiome, and functional screening approaches based on homology-based screening give further insights into the specific traits which may be useful in the discovery of novel natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amagata T, Usami Y, Minoura K, Ito T, Numata A (1998) Cytotoxic substances produced by a fungal strain from a sponge: physico-chemical properties and structures. J Antibiot 51(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ang KKH, Holmes MJ, Higa T, Hamann MT, Kara UAK (2000) In vivo antimalarial activity of the beta-carboline alkaloid manzamine A. Antimicrob Agents Chemother 44(6):1645–1649. doi:10.1128/AAC.44.6.1645-1649.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arillo A, Bavestrello G, Burlando B, Sarà M (1993) Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanism. Mar Biol 117(1):159–162. doi:10.1007/BF00346438

    Article  CAS  Google Scholar 

  • Bayer K, Kamke J, Hentschel U (2014) Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR. FEMS Microbiol Ecol 89(3):679–690. doi:10.1111/1574-6941.12369

    Article  CAS  PubMed  Google Scholar 

  • Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79(3):341–353. doi:10.1016/j.ecss.2008.05.002

    Article  Google Scholar 

  • Bergmann W, Burke DC (1955) Contributions to the study of marine products. XXXIX. The nucleosides of sponges. III. Spongothymidine and spongouridine. J Org Chem 20(11):1501–1507. doi:10.1021/jo01128a007

    Article  CAS  Google Scholar 

  • Bernan VS, Greenstein M., Maiese WM (1997) Marine microorganisms as a source of new natural products. In: Neidleman SL, Laskin AI (eds) Advances in applied microbiology, vol 43. Academic Press, New York, pp 57–90. http://www.sciencedirect.com/science/article/pii/S0065216408702235

  • Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52(7):716–722

    Article  CAS  PubMed  Google Scholar 

  • Bewley CA, John Faulkner D (1998) Lithistid sponges: star performers or hosts to the stars. Angew Chem Int Ed 37(16):2162–2178

    Article  Google Scholar 

  • Bhadury P, Mohammad BT, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33(5):325–337. doi:10.1007/s10295-005-0070-3

    Article  CAS  PubMed  Google Scholar 

  • Biabani M, Farooq A, Laatsch H (1998) Advances in chemical studies on low-molecular weight metabolites of marine fungi. J Prakt Chem 340(7):589–607. doi:10.1002/prac.19983400702

    Article  CAS  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2006) Mar Nat Prod. http://dx.doi.org/10.1039/b502792f

  • Bringmann G, Lang G, Steffens S, Günther E, Schaumann K (2003b) Evariquinone, isoemericellin, and stromemycin from a sponge derived strain of the fungus Emericella variecolor. Phytochemistry 63(4):437–443

    Article  CAS  PubMed  Google Scholar 

  • Bringmann G, Lang G, Mühlbacher J, Schaumann K, Steffens S, Rytik PG, Hentschel U, Morschhäuser J, Müller WEG (2003a) Sorbicillactone A: a structurally unprecedented bioactive novel-type alkaloid from a sponge-derived fungus. Prog Mol Subcell Biol 37:231–253

    Article  CAS  PubMed  Google Scholar 

  • Bultel-Poncé V, Debitus C, Blond A, Cerceau C, Guyot M (1997) Lutoside: an acyl-1-(acyl-6′-mannobiosyl)-3-glycerol isolated from the sponge-associated bacterium Micrococcus luteus. Tetrahedron Lett 38(33):5805–5808. doi:10.1016/S0040-4039(97)01283-5

    Article  Google Scholar 

  • Chambers S (2003) In: Hooper JNA, van Soest RWM (eds) Systema porifera. A guide to the classification of sponges. Kluwer Academic, Dordrecht, 1756 pp. ISBN 0-306-47260-0. Aquat Conserv Mar Freshwat Ecosyst 13(5):461–462. doi:10.1002/aqc.593

  • Cheng X-C, Varoglu M, Abrell L, Crews P, Lobkovsky E, Clardy J (1994) Chloriolins A-C, chlorinated sesquiterpenes produced by fungal cultures separated from a Jaspis marine sponge. J Org Chem 59(21):6344–6348. doi:10.1021/jo00100a041

    Article  CAS  Google Scholar 

  • Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M et al (2008) Functional metagenomic profiling of nine biomes. Nature 452(7187):629–632. doi:10.1038/nature06810

    Article  CAS  PubMed  Google Scholar 

  • Edrada RA, Heubes M, Brauers G, Wray V, Berg A, Grafe U, Wohlfarth M et al (2002) Online analysis of xestodecalactones A-C, novel bioactive metabolites from the fungus Penicillium cf. montanense and their subsequent isolation from the sponge Xestospongia exigua. J Nat Prod 65(11):1598–1604

    Article  CAS  PubMed  Google Scholar 

  • Erickson KL, Beutler JA, Cardellina JH, Boyd MR (2001) Salicylihalamides A and B, novel cytotoxic macrolides from the marine sponge Haliclona sp. J Org Chem 66(4):1532. doi:10.1021/jo004040x

    Article  CAS  Google Scholar 

  • Facts and Figures on Marine Biodiversity | United Nations Educational, Scientific and Cultural Organization (2016) http://www.unesco.org/new/en/natural-sciences/ioc-oceans/priority-areas/rio-20-ocean/blueprint-for-the-future-we-want/marine-biodiversity/facts-and-figures-on-marine-biodiversity/. Accessed June 24

  • Fiume L, Bonino F, Mattioli A, Chiaberge E, Cerenzia MRT, Busi C, Brunetto MR, Verme G (1988) Originally Published as Volume 2, Issue 8601 Inhibition of hepatitis b virus replication by vidarabine monophosphate conjugated with lactosaminated serum albumin. Lancet 332(8601):13–15. doi:10.1016/S0140-6736(88)92946-7

    Article  Google Scholar 

  • Fuerst JA (2014) Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl Microbiol Biotechnol 98(17):7331–7347. doi:10.1007/s00253-014-5861-x

    Article  CAS  PubMed  Google Scholar 

  • Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P, Pawlik JR, Lindquist NL, Erpenbeck D, Wörheide G, Hentschel U (2014) The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol Bull 227(1):78–88

    Article  PubMed  Google Scholar 

  • Gollner A, Altmann K-H, Gertsch J, Mulzer J (2009) The laulimalide family: total synthesis and biological evaluation of neolaulimalide, isolaulimalide, laulimalide and a nonnatural analogue. Chem Eur J 15(24):5979–5997. doi:10.1002/chem.200802605

    Article  CAS  PubMed  Google Scholar 

  • Gunasekera SP, Gunasekera M, Longley RE, Schulte GK (1990) Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge discodermia dissoluta. J Org Chem 55(16):4912–4915. doi:10.1021/jo00303a029

    Article  CAS  Google Scholar 

  • Han Y, Yang B, Zhang F, Miao X, Li Z (2009) Characterization of antifungal chitinase from marine streptomyces sp. DA11 associated with South China Sea sponge Craniella australiensis. Mar Biotechnol (NY) 11(1):132–140. doi:10.1007/s10126-008-9126-5

    Article  CAS  Google Scholar 

  • Hart JB, Lill RE, Hickford SJH, Blunt JW, Munro MHG (2000) The halichondrins: chemistry, biology, supply and delivery. In: Fusetani N (ed) Drugs from the sea. Karger, Basel, pp 134–153. http://www.karger.com/doi/10.1159/000062488

    Chapter  Google Scholar 

  • Hayakawa Y, Rovero S, Forni G, Smyth MJ (2003) α-Galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proc Natl Acad Sci 100(16):9464–9469. doi:10.1073/pnas.1630663100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haygood MG, Schmidt EW, Davidson SK, John Faulkner D (1999) Microbial symbionts of marine invertebrates. J Mol Microbiol Biotechnol 1(1):33–43. https://utah.pure.elsevier.com/en/publications/microbial-symbionts-of-marine-invertebrates-opportunities-for-mic

    CAS  PubMed  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68(9):4431–4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55(2):167–177. doi:10.1111/j.1574-6941.2005.00046.x

    Article  CAS  PubMed  Google Scholar 

  • Hill R, Peraud O, Hamann M, Kasanah N (2005) Manzamine-producing actinomycetes. US20050244938 A1, filed August 1, 2003, and issued November 3, 2005

    Google Scholar 

  • Hinde R, Pironet F, Borowitzka MA (1994) Isolation of Oscillatoria spongeliae, the filamentous cyanobacterial symbiont of the marine sponge Dysidea herbacea. Mar Biol 119(1):99–104. doi:10.1007/BF00350111

    Article  Google Scholar 

  • Hiort J, Maksimenka K, Reichert M, Perović-Ottstadt S, Lin WH, Wray V, Steube K et al (2004) New natural products from the sponge-derived fungus Aspergillus niger. J Nat Prod 67(9):1532–1543. doi:10.1021/np030551d

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T, Michaelis W, Reitner J (2005) An anaerobic world in sponges. Geomicrobiol J 22(1–2):1–10. doi:10.1080/01490450590922505

    Article  Google Scholar 

  • Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, Schläppy M-L, Schleper C, Kuypers MMM (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11(9):2228–2243. doi:10.1111/j.1462-2920.2009.01944.x

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P, Tyson GW (2008) Microbiology: metagenomics. Nature 455(7212):481–483. doi:10.1038/455481a

    Article  CAS  PubMed  Google Scholar 

  • Hu J-F, Hamann MT, Hill R, Kelly M (2003) The manzamine alkaloids. In: Cordell GA (eds) The alkaloids: chemistry and biology, vol 60. Academic, New York, pp 207–285

    Google Scholar 

  • Jadulco R, Brauers G, Edrada RA, Ebel R, Wray V, Sudarsono S, Proksch P (2002) New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J Nat Prod 65(5):730–733

    Article  CAS  PubMed  Google Scholar 

  • Jadulco R, Edrada RA, Ebel R, Berg A, Schaumann K, Wray V, Steube K, Proksch P (2004) New communesin derivatives from the fungus Penicillium sp. derived from the Mediterranean sponge Axinella verrucosa. J Nat Prod 67(1):78–81. doi:10.1021/np030271y

    Article  CAS  PubMed  Google Scholar 

  • Jayatilake GS, Baker BJ, McClintock JB (1995) Isolation and identification of a stilbene derivative from the antarctic sponge Kirkpatrickia variolosa. J Nat Prod 58(12):1958–1960. doi:10.1021/np50126a028

    Article  CAS  Google Scholar 

  • Jensen PR, Fenical W (1994) Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu Rev Microbiol 48(1):559–584. doi:10.1146/annurev.mi.48.100194.003015

    Article  CAS  PubMed  Google Scholar 

  • Kennedy J, Marchesi JR, Dobson ADW (2007) Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl Microbiol Biotechnol 75(1):11–20. doi:10.1007/s00253-007-0875-2

    Article  CAS  PubMed  Google Scholar 

  • Kennedy J, Marchesi JR, Dobson ADW (2008) Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Factories 7:27. doi:10.1186/1475-2859-7-27

    Article  Google Scholar 

  • König GM, Kehraus S, Seibert SF, Abdel-Lateff A, Müller D (2006) Natural products from marine organisms and their associated microbes. Chembiochem 7(2):229–238. doi:10.1002/cbic.200500087

    Article  PubMed  Google Scholar 

  • Kumar P, Khosla C, Tang Y (2004) Manipulation and analysis of polyketide synthases. Methods Enzymol Protein Eng 388:269–293

    Article  CAS  Google Scholar 

  • Kuznetsov G, TenDyke K, Towle MJ, Cheng H, Liu J, Marsh JP, Schiller SER et al (2009) Tubulin-based antimitotic mechanism of E7974, a novel analogue of the marine sponge natural product hemiasterlin. Am Assoc Cancer Res 8(10):2852–2860. doi:10.1158/1535-7163.MCT-09-0301

    CAS  Google Scholar 

  • Kuznetsov G, TenDyke K, Yu M, Littlefield B (2007) Antiproliferative effects of halichondrin B analog eribulin mesylate (E7389) against paclitaxel-resist ant human cancer cells in vitro. Am Assoc Cancer Res 6(11 Suppl):C58

    Google Scholar 

  • Leal MC, Puga J, Serôdio J, Gomes NCM, Calado R (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades—where and what are we bioprospecting? PLoS One 7(1):e30580. doi:10.1371/journal.pone.0030580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Cui C-B, Lin D, Qian-Qun G, Zhu W-M (2005) Potent in vitro anticancer activity of metacycloprodigiosin and undecylprodigiosin from a sponge-derived actinomycete Saccharopolyspora sp. nov. Arch Pharm Res 28(12):1341–1344

    Article  CAS  PubMed  Google Scholar 

  • Li Z (2009) Advances in marine microbial symbionts in the China Sea and related pharmaceutical metabolites. Mar Drugs 7(2):113–129. doi:10.3390/md7020113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3(6):510–516. doi:10.1038/nrmicro1161

    Article  CAS  PubMed  Google Scholar 

  • Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 12(2):1066–1101. doi:10.3390/md12021066

    Article  PubMed  PubMed Central  Google Scholar 

  • Natori T, Koezuka Y, Higa T (1993) Agelasphins, novel α-galactosylceramides from the marine sponge Agelas mauritianus. Tetrahedron Lett 34(35):5591–5592. doi:10.1016/S0040-4039(00)73889-5

    Article  CAS  Google Scholar 

  • Nicol GW, Schleper C (2006) Ammonia-oxidising crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14(5):207–212. doi:10.1016/j.tim.2006.03.004

    Article  CAS  PubMed  Google Scholar 

  • Osinga R, Evelyn A, Grant Burgess J, Hoffmann F, Reitner J, Schumann-Kindel G (2001) Sponge–microbe associations and their importance for sponge bioprocess engineering. Hydrobiologia 461(1–3):55–62. doi:10.1023/A:1012717200362

    Article  Google Scholar 

  • Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, Matsunaga S (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci U S A 101(46):16222–16227. doi:10.1073/pnas.0405976101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price IR, Friker RL, Wilkinson CR (1984) Ceratodictyon spongiosum (rhodofhyta), the macroalgal partner in an alga-sponge symbiosis, grown in unialgal culture12. J Phycol 20(1):156–158. doi:10.1111/j.0022-3646.1984.00156.x

    Article  Google Scholar 

  • Reiswig HM (1975) Bacteria as food for temperate-water marine sponges. Can J Zool 53(5):582–589. doi:10.1139/z75-072

    Article  Google Scholar 

  • Remiszewski SW (2003) The discovery of NVP-LAQ824: from concept to clinic. Curr Med Chem 10(22):2393–2402. doi:10.2174/0929867033456675

    Article  CAS  PubMed  Google Scholar 

  • Sakai R, Higa T, Jefford CW, Bernardinelli G (1986) Manzamine A, a novel antitumor alkaloid from a sponge. J Am Chem Soc 108(20):6404–6405. doi:10.1021/ja00280a055

    Article  CAS  Google Scholar 

  • Schmidt EW, Bewley CA, John Faulkner D (1998) Theopalauamide, a bicyclic glycopeptide from filamentous bacterial symbionts of the lithistid sponge Theonella swinhoei from Palau and Mozambique. J Org Chem 63(4):1254–1258. doi:10.1021/jo9718455

    Article  CAS  Google Scholar 

  • Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T et al (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6(3):564–576. doi:10.1038/ismej.2011.116

    Article  CAS  PubMed  Google Scholar 

  • Selvin J (2009) Exploring the antagonistic producer streptomyces MSI051: implications of polyketide synthase gene type II and a ubiquitous defense enzyme phospholipase A2 in the host sponge Dendrilla nigra. Curr Microbiol 58(5):459–463. doi:10.1007/s00284-008-9343-1

    Article  CAS  PubMed  Google Scholar 

  • Selvin J, Shanmughapriya S, Gandhimathi R, Seghal Kiran G, Rajeetha Ravji T, Natarajaseenivasan K, Hema TA (2009) Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl Microbiol Biotechnol 83(3):435–445. doi:10.1007/s00253-009-1878-y

    Article  CAS  PubMed  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71(2):295–347. doi:10.1128/MMBR.00040-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor MW, Schupp PJ, Dahllöf I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6(2):121–130. doi:10.1046/j.1462-2920.2003.00545.x

    Article  PubMed  Google Scholar 

  • Thakur NL, Hentschel U, Krasko A, Pabel CT, Anil AC, Mueller WEG (2003) Antibacterial activity of the sponge Suberites domuncula and its primmorphs: potential basis for epibacterial chemical defense. Aquat Microb Ecol 31:83–87. http://drs.nio.org/drs/handle/2264/1203

    Article  Google Scholar 

  • Thomas TRA, Kavlekar DP, LokaBharathi PA (2010) Marine drugs from sponge-microbe association—a review. Mar Drugs 8(4):1417–1468. doi:10.3390/md8041417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsimberidou AM, O’Brien SM, Cortes JE, Faderl S, Andreeff M, Kantarjian HM, Keating MJ, Giles FJ (2002) Phase II study of fludarabine, cytarabine (Ara-C), cyclophosphamide, cisplatin and GM-CSF (FACPGM) in patients with Richter’s syndrome or refractory lymphoproliferative disorders. Leuk Lymphoma 43(4):767–772. doi:10.1080/10428190290016872

    Article  CAS  PubMed  Google Scholar 

  • Usami Y, Ikura T, Amagata T, Numata A (2000) First total syntheses and configurational assignments of cytotoxic trichodenones A–C. Tetrahedron Asymmetry 11(18):3711–3725. doi:10.1016/S0957-4166(00)00329-3

    Article  CAS  Google Scholar 

  • Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30(3):301–314. doi:10.1016/0022-0981(77)90038-7

    Article  Google Scholar 

  • Varoglu M, Crews P (2000) Biosynthetically diverse compounds from a saltwater culture of sponge-derived Aspergillus niger. J Nat Prod 63(1):41–43. doi:10.1021/np9902892

    Article  CAS  PubMed  Google Scholar 

  • Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33(7):545–551. doi:10.1007/s10295-006-0123-2

    Article  CAS  PubMed  Google Scholar 

  • Warabi K, Matsunaga S, van Soest RWM, Fusetani N (2003) Dictyodendrins A−E, the first telomerase-inhibitory marine natural products from the sponge Dictyodendrilla verongiformis. J Org Chem 68(7):2765–2770. doi:10.1021/jo0267910

    Article  CAS  PubMed  Google Scholar 

  • Webster NS, Blackall LL (2009) What do we really know about sponge-microbial symbioses? ISME J 3(1):1–3. doi:10.1038/ismej.2008.102

    Article  CAS  PubMed  Google Scholar 

  • Webster NS, Negri AP, Munro MMHG, Battershill CN (2004) Diverse microbial communities inhabit antarctic sponges. Environ Microbiol 6(3):288–300. doi:10.1111/j.1462-2920.2004.00570.x

    Article  PubMed  Google Scholar 

  • Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T, Whalan S, Horn M, Wagner M (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12(8):2070–2082. doi:10.1111/j.1462-2920.2009.02065.x

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webster NS, Thomas T (2016) The sponge hologenome. mBio 7(2):e00135-16. doi:10.1128/mBio.00135-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67(1):434–444. doi:10.1128/AEM.67.1.434-444.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisz JB, Lindquist N, Martens CS (2007) Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155(2):367–376. doi:10.1007/s00442-007-0910-0

    Article  PubMed  Google Scholar 

  • West LM, Northcote PT, Battershill CN (2000) Peloruside A: a potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 65(2):445–449. doi:10.1021/jo991296y

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson CR (1978a) Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Mar Biol 49(2):161–167. doi:10.1007/BF00387115

    Article  Google Scholar 

  • Wilkinson CR (1978b) Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar Biol 49(2):169–176. doi:10.1007/BF00387116

    Article  Google Scholar 

  • Woyke T, Xie G, Copeland A, González JM, Han C, Kiss H, Saw JH et al (2009) Assembling the marine metagenome, one cell at a time. PLoS One 4(4):e5299. doi:10.1371/journal.pone.0005299

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Jun M, Feng Y, Kang Y, Zhang J, Peng-Juan G, Yu W, Ma L-F, Zhu Y-H (2009) Broad-spectrum antimicrobial epiphytic and endophytic fungi from marine organisms: isolation, bioassay and taxonomy. Mar Drugs 7(2):97–112. doi:10.3390/md7020097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie LW, Shu MJ, Hong HZ, Wei S, Yong CO, Shi KD, and Xiang L (2008) Potential inhibitors against sclerotinia sclerotiorum, produced by the fungus myrothecium Sp. Associated with the marine sponge axinella Sp. Eur J Plant Pathol 122(4):571–78. doi:10.1007/s10658-008-9326-x

Download references

Acknowledgements

The authors are thankful to the RGSTC—Maharashtra Gene Bank Programme and the entire team; NCMR-NCCS, Pune; and IISER, Pune, for the funding and support provided. The authors also wish to thank Mr. Chinmay S. Kulkarni for the underwater photographs and Ms. Neha Shintre for the photographs shared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrikant Pawar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lele-Rahalkar, U., Pawar, S. (2017). Marine Sponge-Associated Microbiome: Reservoir of Novel Bioactive Compounds. In: Kalia, V., Shouche, Y., Purohit, H., Rahi, P. (eds) Mining of Microbial Wealth and MetaGenomics. Springer, Singapore. https://doi.org/10.1007/978-981-10-5708-3_11

Download citation

Publish with us

Policies and ethics