Advertisement

Optical and Spectral Characterization of Sub-monolayer QDIPs

  • Saumya SenguptaEmail author
  • Subhananda Chakrabarti
Chapter

Abstract

In this chapter, we have explored the properties of an unconventional type of quantum dots, namely sub-monolayer (SML) quantum. We have performed a systematic study to optimize different growth parameters and have investigated structural and optical properties of the materials. We have successfully demonstrated high device performance of sub-monolayer quantum dots infrared photodetector with confinement-enhancing (CE) barrier and compared with conventional Stranski–Krastanov quantum dots with a similar design. This quantum-dots-in-a-well structure with CE barrier enables higher quantum confinement and increased absorption efficiency due to stronger overlap of wave-functions between the ground state and the excited state. Normal incidence photoresponse peak is obtained at 7.5 µm with a detectivity of 1.2 × 1011 cm Hz1/2 W−1 and responsivity of 0.5 A/W (77 K, 0.4 V, f/2 optics). Using photoluminescence and spectral-response measurements, the band structure of the samples was deduced semi-empirically.

Keywords

Sub-monolayer quantum dots Confinement-enhancing barrier Photodetectors 

References

  1. 1.
    L. Fu, P. Lever, K. Sears, H. Tan, C. Jagadish, In0: 5 Ga0: 5 As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition. IEEE Electron Device Lett. 26 (2005)Google Scholar
  2. 2.
    S.D. Gunapala, S.V. Bandara, C.J. Hill, D.Z. Ting, J.K. Liu, S.B. Rafol et al., 640 × 512 pixels long-wavelength infrared (LWIR) quantum-dot infrared photodetector (QDIP) imaging focal plane array. IEEE J. Quantum Electron. 43, 230–237 (2007)CrossRefGoogle Scholar
  3. 3.
    L. Höglund, C. Asplund, Q. Wang, S. Almqvist, H. Malm, E. Petrini et al., Origin of photocurrent in lateral quantum dots-in-a-well infrared photodetectors. Appl. Phys. Lett. 88, 213510 (2006)CrossRefGoogle Scholar
  4. 4.
    S. Krishna, Quantum dots-in-a-well infrared photodetectors. Infrared Phys. Technol. 47, 153–163 (2005)CrossRefGoogle Scholar
  5. 5.
    Y.D. Sharma, M. Kutty, R. Shenoi, A.V. Barve, S. Myers, J. Shao et al., Investigation of multistack InAs/InGaAs/GaAs self-assembled quantum dots-in-double-well structures for infrared detectors. J. Vac. Sci. Technol. B 28, C3G1-C3G7 (2010)Google Scholar
  6. 6.
    A. Barve, S. Shah, J. Shao, T. Vandervelde, R. Shenoi, W.-Y. Jang et al., Reduction in dark current using resonant tunneling barriers in quantum dots-in-a-well long wavelength infrared photodetector. Appl. Phys. Lett. 93, 131115 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Barve, J. Shao, Y.D. Sharma, T.E. Vandervelde, K. Sankalp, S.J. Lee et al., Resonant tunneling barriers in quantum dots-in-a-well infrared photodetectors. IEEE J. Quantum Electron. 46, 1105–1114 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Chakrabarti, A. Stiff-Roberts, P. Bhattacharya, S. Kennerly, High responsivity AlAs/InAs/GaAs superlattice quantum dot infrared photodetector. Electron. Lett. 40, 197–198 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Chakrabarti, S. Adhikary, N. Halder, Y. Aytac, A. Perera, High-performance, long-wave (∼10.2 μm) InGaAs/GaAs quantum dot infrared photodetector with quaternary In 0.21 Al 0.21 Ga 0.58 As capping. Appl. Phys. Lett. 99, 181102–181102-3 (2011)Google Scholar
  10. 10.
    J. Vaillancourt, P. Vasinajindakaw, X. Lu, A high operating temperature (HOT) middle wave infrared (MWIR) quantum-dot photodetector. Opt. Photonics Lett. 4, 57–61 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Chakrabarti, S. Adhikary, N. Halder, Y. Aytac, A. Perera, Demonstration of high responsivity (~2.16 A/W) and detectivity (~10 11 Jones) in the long wavelength (~10.2 μm) from InGaAs/GaAs quantum dot infrared photodetector with quaternary InAlGaAs capping. SPIE Def. Secur. Sens. 835338–835338-6 (2012)Google Scholar
  12. 12.
    M. Zavvari, V. Ahmadi, A. Mir, E. Darabi, Quantum dot infrared photodetector enhanced by avalanche multiplication. Electron. Lett. 48, 589–591 (2012)CrossRefGoogle Scholar
  13. 13.
    G. Ariyawansa, A.U. Perera, G. Raghavan, G. Von Winckel, A. Stintz, S. Krishna, Effect of well width on three-color quantum dots-in-a-well infrared detectors. IEEE Photonics Technol. Lett. 17, 1064–1066 (2005)CrossRefGoogle Scholar
  14. 14.
    A.V. Barve, J. Montaya, Y. Sharma, T. Rotter, J. Shao, W.-Y. Jang et al., High temperature operation of quantum dots-in-a-well infrared ssss. Infrared Phys. Technol. 54, 215–219 (2011)CrossRefGoogle Scholar
  15. 15.
    A. Barve, S. Sengupta, J. Kim, Y. Sharma, S. Adhikary, T. Rotter et al., Confinement enhancing barriers for high performance quantum dots-in-a-well infrared detectors. Appl. Phys. Lett. 99, 191110 (2011)CrossRefGoogle Scholar
  16. 16.
    V. Bressler-Hill, A. Lorke, S. Varma, P. Petroff, K. Pond, W. Weinberg, Initial stages of InAs epitaxy on vicinal GaAs (001)-(2 × 4). Phys. Rev. B 50, 8479 (1994)CrossRefGoogle Scholar
  17. 17.
    N. Ledentsov, P. Wang, C.S. Torres, A.Y. Egorov, M. Maximov, V. Ustinov et al., Optical spectroscopic studies of InAs layer transformation on GaAs surfaces. Phys. Rev. B 50, 12171 (1994)CrossRefGoogle Scholar
  18. 18.
    N. Ledentsov, A. Tsatsul’nikov, A.Y. Egorov, P. Kop’ev, A. Kovsh, M. Maximov, et al., Intrinsic optical confinement and lasing in InAs–AlGaAs submonolayer superlattices. Appl. phys. Lett. 74, 161–163 (1999)Google Scholar
  19. 19.
    Z. Xu, J. Wang, Y. Wang, W.-K. Ge, Q. Li, S. Li et al., Wavelength tuning in GaAs/AlGaAs quantum wells by InAs submonolayer insertion. J. Phys. Condens. Matter 11, 3629 (1999)CrossRefGoogle Scholar
  20. 20.
    F.-I. Lai, H. Yang, G. Lin, I.-C. Hsu, J.-N. Liu, N. Maleev et al., High-power single-mode submonolayer quantum-dot photonic crystal vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 13, 1318–1323 (2007)CrossRefGoogle Scholar
  21. 21.
    A. Lenz, H. Eisele, J. Becker, L. Ivanova, E. Lenz, F. Luckert et al., Atomic structure of buried InAs sub-monolayer depositions in GaAs. Appl. Phys. Express 3, 105602 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Krishna, D. Zhu, J. Xu, K. Linder, O. Qasaimeh, P. Bhattacharya et al., Structural and luminescence characteristics of cycled submonolayer InAs/GaAs quantum dots with room-temperature emission at 1.3 μm. J. Appl. Phys. 86, 6135–6138 (1999)CrossRefGoogle Scholar
  23. 23.
    Z. Xu, D. Birkedal, J.M. Hvam, Z. Zhao, Y. Liu, K. Yang et al., Structure and optical anisotropy of vertically correlated submonolayer InAs/GaAs quantum dots. Appl. Phys. Lett. 82, 3859–3861 (2003)CrossRefGoogle Scholar
  24. 24.
    N. Ledentsov, D. Bimberg, F. Hopfer, A. Mutig, V. Shchukin, A. Savel’ev et al., Submonolayer quantum dots for high speed surface emitting lasers. Nanoscale Res. Lett. 2, 417–429 (2007)Google Scholar
  25. 25.
    A.R. Kovsh, A.E. Zhukov, N.A. Maleev, S.S. Mikhrin, D. Livshits, Y.M. Shernyakov et al., High power lasers based on submonolayer InAs–GaAs quantum dots and InGaAs quantum wells. Microelectron. J. 34, 491–493 (2003)CrossRefGoogle Scholar
  26. 26.
    Z. Xu, D. Birkedal, M. Juhl, J.M. Hvam, Submonolayer InGaAs/GaAs quantum-dot lasers with high modal gain and zero-linewidth enhancement factor. Appl. Phys. Lett. 85, 3259 (2004)CrossRefGoogle Scholar
  27. 27.
    L. Xin-Kun, J. Peng, L. De-Chun, W. Ju, W. Zhan-Guo, InAs/GaAs submonolayer quantum-dot superluminescent diodes with active multimode interferometer configuration. Chin. Phys. B 22, 048102 (2013)CrossRefGoogle Scholar
  28. 28.
    D.Z.-Y. Ting, S.V. Bandara, S.D. Gunapala, J.M. Mumolo, S.A. Keo, C.J. Hill et al., Submonolayer quantum dot sss. Appl. Phys. Lett. 94, 111107 (2009)CrossRefGoogle Scholar
  29. 29.
    S. Sengupta, A. Mandal, H. Ghadi, S. Chakrabarti, K.L. Mathur, Comprehensive study on molecular beam epitaxy-grown InAs sub-monolayer quantum dots with different capping combinations. J. Vac. Sci. Technol. B 31, 03C136 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Kim, S. Sengupta, A. Barve, Y. Sharma, S. Adhikary, S. Lee et al., Multi-stack InAs/InGaAs sub-monolayer quantum dots sssss. Appl. Phys. Lett. 102, 011131 (2013)CrossRefGoogle Scholar
  31. 31.
    S. Sengupta, J.O. Kim, A.V. Barve, S. Adhikary, Y.D. Sharma, N. Gautam et al., Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure. Appl. Phys. Lett. 100, 191111–191111-4 (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations