Advertisement

Structural and Optical Characterization of Bilayer QD Heterostructures

  • Saumya SenguptaEmail author
  • Subhananda Chakrabarti
Chapter

Abstract

Efforts are being made to obtain efficient quantum dot heterostructures which possess excellent uniformity in size distribution as well as capable to extend the emission wavelength to technologically useful telecommunication wavelengths, specifically 1.3 and 1.55 μm. In InAs/GaAs single-layer quantum dot (SQD) structure, higher InAs monolayer coverage for the QDs gives rise to larger dots emitting at longer wavelengths but results in inhomogeneous dot-size distribution. The bilayer quantum dots (BQDs) can be used as an alternative to SQDs, which can emit at longer wavelengths (1.229 μm at 8 K) with significantly narrow linewidth (~16.7 meV) owing vertical ordering and electronic coupling between the two layers of dots separated by a thin (7–9 nm) spacer layer. Morphological and optical properties of bilayer InAs/GaAs quantum dot heterostructure are investigated. As compared to the similar single-layer quantum dot (SQD) structure, the bilayer quantum dot (BQD) structure showed a more uniform spatial distribution and increased size homogeneity of the dots. It also exhibited longer wavelength photoluminescence (PL) emission at room temperature, with the peak at a wavelength (1.34 μm) in the infrared communication window. In an interesting study, the emission linewidth of our BQD sample is found to be insensitive towards post-growth treatments due to the strain interaction between the layers of dots.

Keywords

Bilayer quantum dots Rapid thermal annealing Transmission electron microscope 

References

  1. 1.
    G. Costantini, C. Manzano, R. Songmuang, O. Schmidt, K. Kern, InAs/GaAs (001) quantum dots close to thermodynamic equilibrium. Appl. Phys. Lett. 82, 3194–3196 (2003)CrossRefGoogle Scholar
  2. 2.
    S. Jung, H. Yeo, I. Yun, J. Leem, I. Han, J. Kim et al., Size distribution effects on self-assembled InAs quantum dots. J. Mater. Sci. Mater. Electron. 18, 191–194 (2007)CrossRefGoogle Scholar
  3. 3.
    N. Ledentsov, V. Shchukin, M.E. Grundmann, N. Kirstaedter, J. Böhrer, O. Schmidt et al., Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. Phys. Rev. B 54, 8743 (1996)Google Scholar
  4. 4.
    Y.I. Mazur, Z.M. Wang, G. Tarasov, M. Xiao, G. Salamo, J. Tomm et al., Interdot carrier transfer in asymmetric bilayer InAs/GaAs quantum dot structures. Appl. Phys. Lett. 86, 063102–063102-3 (2005)Google Scholar
  5. 5.
    P. Howe, B. Abbey, E. Le Ru, R. Murray, T. Jones, Strain-interactions between InAs/GaAs quantum dot layers. Thin Solid Films 464, 225–228 (2004)CrossRefGoogle Scholar
  6. 6.
    A. Hospodkova, E. Hulicius, J. Oswald, J. Pangrác, T. Mates, K. Kuldová et al., Properties of MOVPE InAs/GaAs quantum dots overgrown by InGaAs. J. Cryst. Growth 298, 582–585 (2007)CrossRefGoogle Scholar
  7. 7.
    K. Nishi, H. Saito, S. Sugou, J.-S. Lee, A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In 0.2 Ga 0.8 As grown on GaAs substrates. Appl. Phys. Lett. 74, 1111–1113 (1999)CrossRefGoogle Scholar
  8. 8.
    M. Usman, S. Heck, E. Clarke, P. Spencer, H. Ryu, R. Murray et al., Experimental and theoretical study of polarization-dependent optical transitions in InAs quantum dots at telecommunication-wavelengths (1300-1500 nm). J. Appl. Phys. 109, 104510 (2011)CrossRefGoogle Scholar
  9. 9.
    M. Taylor, P. Spencer, E. Clarke, E. Harbord, R. Murray, Tuning exciton g-factors in InAs/GaAs quantum dots. J. Phys. D Appl. Phys. 46, 505105 (2013)CrossRefGoogle Scholar
  10. 10.
    N. Jin-Phillipp, K. Du, F. Phillipp, M. Zundel, K. Eberl, Thermal stability of stacked self-assembled InP quantum dots in GaInP. J. Appl. Phys. 91, 3255–3260 (2002)CrossRefGoogle Scholar
  11. 11.
    A. Zhukov, A.Y. Egorov, A. Kovsh, V. Ustinov, N. Ledentsov, M. Maksimov et al., Injection heterolaser based on an array of vertically aligned InGaAs quantum dots in a AlGaAs matrix. Semiconductors 31, 411–414 (1997)CrossRefGoogle Scholar
  12. 12.
    P. Joyce, E. Le Ru, T. Krzyzewski, G. Bell, R. Murray, T. Jones, Optical properties of bilayer InAs/GaAs quantum dot structures: influence of strain and surface morphology. Phys. Rev. B 66, 075316 (2002)CrossRefGoogle Scholar
  13. 13.
    E. Clarke, P. Spencer, E. Harbord, P. Howe, R. Murray, Growth, optical properties and device characterisation of InAs/GaAs quantum dot bilayers. J. Phys. Conf. Ser. 012003 (2008)Google Scholar
  14. 14.
    C. Priester, Modified two-dimensional to three-dimensional growth transition process in multistacked self-organized quantum dots. Phys. Rev. B 63, 153303 (2001)CrossRefGoogle Scholar
  15. 15.
    Q. Xie, A. Madhukar, P. Chen, N.P. Kobayashi, Vertically self-organized InAs quantum box islands on GaAs (100). Phys. Rev. Lett. 75, 2542 (1995)CrossRefGoogle Scholar
  16. 16.
    J. Johansson, W. Seifert, V. Zwiller, T. Junno, L. Samuelson, Size reduction of self assembled quantum dots by annealing. Appl. Surf. Sci. 134, 47–52 (1998)CrossRefGoogle Scholar
  17. 17.
    S.W. Ryu, I. Kim, B.D. Choe, W.G. Jeong, The effect of strain on the interdiffusion in InGaAs/GaAs quantum wells. Appl. Phys. Lett. 67, 1417–1419 (1995)CrossRefGoogle Scholar
  18. 18.
    L. Selen, L. Van IJzendoorn, M. de Voigt, P. Koenraad, Evidence for strain in and around InAs quantum dots in GaAs from ion-channeling experiments. Phys. Rev. B 61, 8270 (2000)Google Scholar
  19. 19.
    A. Babiński, J. Jasiński, R. Bożek, A. Szepielow, J. Baranowski, Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap. Appl. Phys. Lett. 79, 2576–2578 (2001)CrossRefGoogle Scholar
  20. 20.
    R. Heitz, I. Mukhametzhanov, A. Madhukar, A. Hoffmann, D. Bimberg, Temperature dependent optical properties of self-organized InAs/GaAs quantum dots. J. Electron. Mater. 28, 520–527 (1999)CrossRefGoogle Scholar
  21. 21.
    C.M. Lee, S.K. Noh, J.I. Lee, D.-H. Lee, J.-Y. Leem, I.K. Han et al., Optical properties of In0. 5Ga0. 5As/GaAs quantum dots grown by heterogeneous droplet epitaxy with post-growth annealing. J. Korean Phys. Soc. 41, L579–L582 (2002)Google Scholar
  22. 22.
    J. Ng, U. Bangert, M. Missous, Formation and role of defects in stacked large binary InAs/GaAs quantum dot structures. Semicond. Sci. Technol. 22, 80 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Yang, P. Bhattacharya, Z. Mi, High-performance In 0.5 Ga 0.5 As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters. IEEE Trans. Electron Devices 54, 2849–2855 (2007)CrossRefGoogle Scholar
  24. 24.
    J. Suseendran, N. Halder, S. Chakrabarti, T. Mishima, C. Stanley, Stacking of multilayer InAs quantum dots with combination capping of InAlGaAs and high temperature grown GaAs. Superlattices Microstruct. 46, 900–906 (2009)CrossRefGoogle Scholar
  25. 25.
    S. Adhikary, N. Halder, S. Chakrabarti, S. Majumdar, S. Ray, M. Herrera et al., Investigation of strain in self-assembled multilayer InAs/GaAs quantum dot heterostructures. J. Cryst. Growth 312, 724–729 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations