Advertisement

Structural, Optical and Spectral Characterization of Single-Layer QDIPs

  • Saumya SenguptaEmail author
  • Subhananda Chakrabarti
Chapter

Abstract

In this chapter, we have investigated the effect of growth pause on structural, optical and spectral properties of InAs/GaAs QD materials. Introduction of growth pause or ripening time changes the morphology of the QDs by altering effective epitaxial strain during the growth of QDs. Initially, we grew single-layer QD samples, with another QD layer on the top of the surface for structural characterization. Sample sets with two different InAs growth rates (0.032 and 0.197 ML/s) were grown on (100)-oriented GaAs substrates. Three samples, with 0, 25 and 50 s growth pause, were grown with each of the two growth rates, keeping all other growth parameters constant. We have examined the change of their optical and structural properties with different duration of growth pause. For device fabrication, we grew 10 mutually uncoupled QD layers sandwiched between Si-doped thick GaAs contact layers. In this case, the InAs dots were grown at 520 °C with a growth rate of 0.1 MLs−1. Growth pauses of 0, 25 and 50 s were introduced for samples A, B and C, respectively. Finally, single-pixel photodetector devices were fabricated from as-grown A, B and C samples with standard fabrication procedures.

Keywords

Growth pause Scanning electron microscope Photoluminescence 

References

  1. 1.
    T. Badcock, H. Liu, K. Groom, C. Jin, M. Gutierrez, M. Hopkinson et al., 1.3 µm InAs/GaAs quantum-dot laser with low-threshold current density and negative characteristic temperature above room temperature. Electro. Lett. 42, 922–923 (2006)CrossRefGoogle Scholar
  2. 2.
    S. Chakrabarti, A. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. Rafol et al., High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity. IEEE Photonics Technol. Lett. 16, 1361–1363 (2004)CrossRefGoogle Scholar
  3. 3.
    H. Liu, S. Liew, T. Badcock, D. Mowbray, M. Skolnick, S. Ray et al., p-doped 1.3 μm InAs/GaAs quantum-dot laser with a low threshold current density and high differential efficiency. Appl. Phys. Lett. 89, 073113 (2006)CrossRefGoogle Scholar
  4. 4.
    D. Pan, E. Towe, S. Kennerly, A five-period normal-incidence (In, Ga) As/GaAs quantum-dot infrared photodetector. Appl. Phys. Lett. 75, 2719–2721 (1999)CrossRefGoogle Scholar
  5. 5.
    J. Phillips, P. Bhattacharya, S. Kennerly, D. Beekman, M. Dutta, Self-assembled InAs-GaAs quantum-dot intersubband detectors. IEEE J. Q. Electron. 35, 936–943 (1999)CrossRefGoogle Scholar
  6. 6.
    J. Tatebayashi, N. Hatori, H. Kakuma, H. Ebe, H. Sudo, A. Kuramata et al., Low threshold current operation of self-assembled InAs/GaAs quantum dot lasers by metal organic chemical vapour deposition. Electron. Lett. 39, 1130–1131 (2003)CrossRefGoogle Scholar
  7. 7.
    P. Joyce, T. Krzyzewski, G. Bell, B. Joyce, T. Jones, Composition of InAs quantum dots on GaAs (001): direct evidence for (In, Ga)As alloying. Phys. Rev. B 58, R15981 (1998)CrossRefGoogle Scholar
  8. 8.
    P. Joyce, T. Krzyzewski, G. Bell, T. Jones, S. Malik, D. Childs et al., Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy. Phys. Rev. B 62, 10891 (2000)CrossRefGoogle Scholar
  9. 9.
    A. Convertino, L. Cerri, G. Leo, S. Viticoli, Growth interruption to tune the emission of InAs quantum dots embedded in InGaAs matrix in the long wavelength region. J. Crys. Growth 261, 458–465 (2004)CrossRefGoogle Scholar
  10. 10.
    D. Bhattacharyya, A. Helmy, A. Bryce, E. Avrutin, J. Marsh, Selective control of self-organized In0.5Ga0.5As/GaAs quantum dot properties: quantum dot intermixing. J. Appl. Phys. 88, 4619–4622 (2000)CrossRefGoogle Scholar
  11. 11.
    J. Garcıa, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. Feng, A. Lorke et al., Intermixing and shape changes during the formation of InAs self-assembled quantum dots. Appl. Phys. Lett. 71, 2014–2016 (1997)CrossRefGoogle Scholar
  12. 12.
    A. Kosogov, P. Werner, U. Gösele, N. Ledentsov, D. Bimberg, V. Ustinov et al., Structural and optical properties of InAs–GaAs quantum dots subjected to high temperature annealing. Appl. Phys. Lett. 69, 3072–3074 (1996)CrossRefGoogle Scholar
  13. 13.
    J. Tatebayashi, Y. Arakawa, N. Hatori, H. Ebe, M. Sugawara, H. Sudo et al., InAs/GaAs self-assembled quantum-dot lasers grown by metalorganic chemical vapor deposition—Effects of postgrowth annealing on stacked InAs quantum dots. Appl. Phys. Lett. 85, 1024–1026 (2004)CrossRefGoogle Scholar
  14. 14.
    Z. Zhen, D. Bedarev, B. Volovik, N. Ledentsov, A. Lunev, M. Maksimov et al., Influence of composition and anneal conditions on the optical properties of (In, Ga) As quantum dots in an (Al, Ga) As matrix. Semiconductors 33, 80–84 (1999)CrossRefGoogle Scholar
  15. 15.
    Q. Zhuang, J. Li, X. Wang, Y. Zeng, Y. Wang, B. Wang et al., Effects of rapid thermal annealing on self-assembled InGaAs/GaAs quantum dots superlattice. J. Cryst. Growth 208, 791–794 (2000)CrossRefGoogle Scholar
  16. 16.
    R. Leon, Y. Kim, C. Jagadish, M. Gal, J. Zou, D. Cockayne, Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots. Appl. Phys. Lett. 69, 1888–1890 (1996)CrossRefGoogle Scholar
  17. 17.
    S. Malik, C. Roberts, R. Murray, M. Pate, Tuning self-assembled InAs quantum dots by rapid thermal annealing. Appl. Phys. Lett. 71, 1987–1989 (1997)CrossRefGoogle Scholar
  18. 18.
    N. Perret, D. Morris, L. Franchomme-Fosse, R. Côté, S. Fafard, V. Aimez et al., Origin of the inhomogenous broadening and alloy intermixing in InAs/GaAs self-assembled quantum dots. Phys. Rev. B 62, 5092 (2000)CrossRefGoogle Scholar
  19. 19.
    C. Chia, Y. Zhang, S. Wong, S. Chua, A. Yong, S. Chow, Testing the upper limit of InAs/GaAs self-organized quantum dots density by fast growth rate. Superlattices Microstruct. 44, 420–424 (2008)CrossRefGoogle Scholar
  20. 20.
    U. Pohl, K. Pötschke, M. Lifshits, V. Shchukin, D. Jesson, D. Bimberg, Self-organized formation of shell-like InAs/GaAs quantum dot ensembles. Appl. Surf. Sci. 252, 5555–5558 (2006)CrossRefGoogle Scholar
  21. 21.
    U. Pohl, K. Pötschke, A. Schliwa, F. Guffarth, D. Bimberg, N. Zakharov et al., Evolution of a multimodal distribution of self-organized InAs/GaAs quantum dots. Phys. Rev. B 72, 245332 (2005)CrossRefGoogle Scholar
  22. 22.
    S. Sengupta, N. Halder, S. Chakrabarti, M. Herrera, M. Bonds, N.D. Browning, Investigation of the effect of varying growth pauses on the structural and optical properties of InAs/GaAs quantum dot heterostructures. Superlattices Microstruct. 46, 611–617 (2009)CrossRefGoogle Scholar
  23. 23.
    M. Srujan, K. Ghosh, S. Sengupta, S. Chakrabarti, Presentation and experimental validation of a model for the effect of thermal annealing on the photoluminescence of self-assembled InAs/GaAs quantum dots. J. Appl. Phys. 107, 123107 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations