Introduction to Infrared Detectors and Quantum Dots

  • Saumya SenguptaEmail author
  • Subhananda Chakrabarti


The majority of objects, those with a temperature between 100 and 400 K, emit strong electromagnetic radiation in the infrared region, especially in 1–14 µm region, which includes short-wavelength infrared (SWIR, ~1.0–3.0 µm), medium-wavelength infrared (MWIR, ~3.0–5.0 µm), long-wavelength infrared (LWIR, ~8.0–14.0 µm) and some part of very-long infrared (VLWIR, ~14.0–100.0 µm). MWIR and LWIR detectors are widely used today in a variety of imaging and video-graphic applications, in fields such as spectroscopy, night vision, thermal imaging, health science, and space research and defence. Different types of IR detectors are based on various semiconductor materials, such as Si, InAs1−x Sb x , Pb1−x Sn x Te, and Hg1−x Cd x Te. To overcome limitations in extending the detection wavelength in longer wavelength region the idea of intersubband transition based photodetectors has been introduced. The spacing between different electronics subbands (a few tenths to hundreds of meV) allows emission or detection of a broad range of IR radiation. Quantum mechanical properties dictate that if any material is scaled down to very small dimension both the conduction and valence band can be split into a number of intersubband energy levels. The dimension of the bulk can be reduced to form different nanostructures, such as quantum wells (QWs), quantum wires and quantum dots (QDs). QDs confine the carriers in all three directions, which results in a complete delta-like DOS in the different energy levels. In recent past MBE grown III–V semiconductors based quantum dots infrared photodectors (QDIPs) have emerged as a potential candidate in the field of MWIR and LWIR imaging technology. Their 3-D carrier confinement provides intrinsic sensitivity to normal incidence radiation, lower dark current and a long excited-state lifetime compared to quantum well infrared photodetectors (QWIPs).


Infrared photodetector Quantum dots Molecular beam aepitaxy 


  1. 1.
    M.A. Khan, J. Kuznia, D. Olson, M. Blasingame, A. Bhattarai, Schottky barrier photodetector based on Mg-doped p-type GaN films. Appl. Phys. Let. 63, 2455–2456 (1993)CrossRefGoogle Scholar
  2. 2.
    J. Law, J. Thong, Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time. Appl. Phys. Let. 88, 133114 (2006)CrossRefGoogle Scholar
  3. 3.
    A. Poglitsch, C. Waelkens, N. Geis, H. Feuchtgruber, B. Vandenbussche, L. Rodriguez et al., The photodetector array camera and spectrometer (PACS) on the Herschel space observatory. arXiv preprint arXiv:1005.1487 (2010)
  4. 4.
    L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt et al., 42 GHz pin germanium photodetector integrated in a silicon-on-insulator waveguide. Opt. Express 17, 6252–6257 (2009)CrossRefGoogle Scholar
  5. 5.
    F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009)CrossRefGoogle Scholar
  6. 6.
    A.W. Hoffman, P.J. Love, J.P. Rosbeck, Megapixel detector arrays: visible to 28 μm, in Optical science and technology, SPIE’s 48th annual meeting, (2004), pp. 194–203Google Scholar
  7. 7.
    D. Smith, C. Mailhiot, Proposal for strained type II superlattice infrared detectors. J. Appl. Phys. 62, 2545–2548 (1987)CrossRefGoogle Scholar
  8. 8.
    M. Planck, On the law of distribution of energy in the normal spectrum. Ann. Phys. 4, 1 (1901)Google Scholar
  9. 9.
  10. 10.
    A. Rogalski, Infrared detectors: an overview. Infrared Phys. Technol. 43, 187–210 (2002)CrossRefGoogle Scholar
  11. 11.
    A. Rogalski, Infrared detectors: status and trends. Prog. Quant. Electron. 27, 59–210 (2003)CrossRefGoogle Scholar
  12. 12.
    H. Drexler, D. Leonard, W. Hansen, J. Kotthaus, P. Petroff, Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots. Phys. Rev. Let. 73, 2252 (1994)CrossRefGoogle Scholar
  13. 13.
    R. Heitz, M. Veit, N.N. Ledentsov, A. Hoffmann, D. Bimberg, V.M. Ustinov et al., Energy relaxation by multiphonon processes in InAs/GaAs quantum dots. Phys. Rev. B 56, 10435 (1997)CrossRefGoogle Scholar
  14. 14.
    D. Leonard, K. Pond, P. Petroff, Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B 50, 11687 (1994)CrossRefGoogle Scholar
  15. 15.
    G. Solomon, J. Trezza, J. Harris Jr., Substrate temperature and monolayer coverage effects on epitaxial ordering of InAs and InGaAs islands on GaAs. Appl. Phys. Let. 66, 991–993 (1995)CrossRefGoogle Scholar
  16. 16.
    Q. Xie, P. Chen, A. Kalburge, T. Ramachandran, A. Nayfonov, A. Konkar et al., Realization of optically active strained InAs island quantum boxes on GaAs (100) via molecular beam epitaxy and the role of island induced strain fields. J. Cryst. Growth 150, 357–363 (1995)CrossRefGoogle Scholar
  17. 17.
    F. Frank, J.H. van der Merwe, One-dimensional dislocations. I. static theory, in Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 198 (1949), pp. 205–216Google Scholar
  18. 18.
    M. Volmer, A. Weber, Keimbildung in übersättigten Gebilden. Z. Phys. Chem. 119, 277–301 (1926)Google Scholar
  19. 19.
    I. Vurgaftman, J. Meyer, L. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)CrossRefGoogle Scholar
  20. 20.
    D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures, vol. 471973882 (John Wiley Chichester, 1999)Google Scholar
  21. 21.
    S. Krishna, Optoelectronics properties of self-assembled InAs/InGaAs quantum dots. III-V Semicond Heterostruct Phys Devices 3438, 234–242 (2003)Google Scholar
  22. 22.
    A. Sada, Elasticity: Theory and Application (ed: Pergamon Press, 1974)Google Scholar
  23. 23.
    P. Keating, Theory of the third-order elastic constants of diamond-like crystals. Phys. Rev. 149, 674 (1966)CrossRefGoogle Scholar
  24. 24.
    M. Scheffler, J.P. Vigneron, G.B. Bachelet, Total-energy gradients and lattice distortions at point defects in semiconductors. Phys. Rev. B 31, 6541 (1985)CrossRefGoogle Scholar
  25. 25.
    H. Jiang, J. Singh, Self-assembled semiconductor structures: electronic and optoelectronics properties. Quantum Electron. IEEE J. 34, 1188–1196 (1998)CrossRefGoogle Scholar
  26. 26.
    J. Singh, Electronic and Optoelectronics Properties of Semiconductor Structures (Cambridge University Press, Cambridge, 2003)Google Scholar
  27. 27.
    U. Bockelmann, T. Egeler, Electron relaxation in quantum dots by means of Auger processes. Phys. Rev. B 46, 15574 (1992)CrossRefGoogle Scholar
  28. 28.
    P. Bhattacharya, X. Su, S. Chakrabarti, G. Ariyawansa, and A. Perera, Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature. Appl. Phys. Lett. 86, 191106–191106-3 (2005)Google Scholar
  29. 29.
    H. Lim, S. Tsao, W. Zhang, M. Razeghi, High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature. Appl Phys Lett. 90, 131112–131112-3 (2007)Google Scholar
  30. 30.
    X. Su, S. Chakrabarti, P. Bhattacharya, G. Ariyawansa, A.U. Perera, A resonant tunneling quantum-dot infrared photodetector. Quantum Electron. IEEE J. 41, 974–979 (2005)CrossRefGoogle Scholar
  31. 31.
    S. Tsao, H. Lim, H. Seo, W. Zhang, M. Razeghi, InP-based quantum-dot infrared photodetectors with high quantum efficiency and high-temperature imaging. Sens. J. IEEE 8, 936–941 (2008)CrossRefGoogle Scholar
  32. 32.
    U. Bockelmann, G. Bastard, Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. Phys. Rev. B 42, 8947 (1990)CrossRefGoogle Scholar
  33. 33.
    D. Pan, E. Towe, S. Kennerly, Normal-incidence intersubband (In, Ga) As/GaAs quantum dot infrared photodetectors. Appl. Phys. Lett. 73, 1937–1939 (1998)CrossRefGoogle Scholar
  34. 34.
    A. Stiff, S. Krishna, P. Bhattacharya, S. Kennerly, High-detectivity, normal-incidence, mid-infrared (λ ∼ 4 μm) InAs/GaAs quantum-dot detector operating at 150 K. Appl. Phys. Lett. 79, 421–423 (2001)CrossRefGoogle Scholar
  35. 35.
    A. Tartakovskii, M. Makhonin, I. Sellers, J. Cahill, A. Andreev, D. Whittaker et al., Effect of thermal annealing and strain engineering on the fine structure of quantum dot excitons. Phys. Rev. B 70, 193303 (2004)CrossRefGoogle Scholar
  36. 36.
    H. Lee, J. Lee, T. Kim, M. Kim, Effect of thermal annealing on the microstructural and optical properties of vertically stacked InAs/GaAs quantum dots embedded in modulation-doped heterostructures. J. Appl. Phys. 94, 6354–6357 (2003)CrossRefGoogle Scholar
  37. 37.
    S. Xu, X. Wang, S. Chua, C. Wang, W. Fan, J. Jiang et al., Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots. Appl. Phys. Lett. 72, 3335–3337 (1998)CrossRefGoogle Scholar
  38. 38.
    C. Chia, S. Chua, Z. Miao, Y. Chye, Enhanced photoluminescence of InAs self-assembled quantum dots grown by molecular-beam epitaxy using a “nucleation-augmented” method. Appl. Phys. Lett. 85, 567–569 (2004)CrossRefGoogle Scholar
  39. 39.
    W. Lu, Y. Ji, G. Chen, N. Tang, X. Chen, S. Shen et al., Enhancement of room-temperature photoluminescence in InAs quantum dots. Appl. Phys. Lett. 83, 4300–4302 (2003)CrossRefGoogle Scholar
  40. 40.
    S. Fafard, C.N. Allen, Intermixing in quantum-dot ensembles with sharp adjustable shells. Appl. Phys. Lett. 75, 2374–2376 (1999)CrossRefGoogle Scholar
  41. 41.
    T. Hsu, Y. Lan, W.-H. Chang, N. Yeh, J.-I. Chyi, Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing. Appl. Phys. Lett. 76, 691–693 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations