Skip to main content

DNA as an Electromagnetic Fractal Cavity Resonator: Its Universal Sensing and Fractal Antenna Behavior

  • Conference paper
  • First Online:
Soft Computing: Theories and Applications

Abstract

We report that 3D-A-DNA structure behaves as a fractal antenna, which can interact with the electromagnetic fields over a wide range of frequencies. Using the lattice details of human DNA, we have modeled radiation of DNA as a helical antenna. The DNA structure resonates with the electromagnetic waves at 34 GHz, with a positive gain of 1.7 dBi. We have also analyzed the role of three different lattice symmetries of DNA and the possibility of soliton-based energy transmission along the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xing, H., Wilkerson, D.C., Mayhew, C.N., Lubert, E.J., Skaggs, H.S., Goodson, M.L., Hong, Y., Park-Sarge, O.K., Sarge, K.D.: Mechanism of HSP 70i gene bookmarking. Science 307, 421–423 (2005)

    Article  Google Scholar 

  2. O’Carroll, M.J., Henshaw, D.L.: Aggregating epidemiological evidence: comparing two seminal EMF reviews. Risk Anal. 28, 225–234 (2008)

    Article  Google Scholar 

  3. Alexandrov, B.S., Gelev, V., Bishop, A.R., Usheva, A., Rasmussen, K.O.: DNA breathing dynamics in the presence of a terahertz field. 29 October 2009. http://arxiv.org/abs/0910.5294

  4. Adair, R.K.: Vibration resonances in biological systems at microwave frequencies. Biophys. J. 82(3), 1147–1152 (2002)

    Article  Google Scholar 

  5. Meyl, K.: DNA and cell resonance: magnetic waves enable cell communication. DNA Cell Biol. 31(4), 422–426 (2012)

    Article  Google Scholar 

  6. Blank, M., Goodman, R.: DNA is a fractal antenna in electromagnetic fields. Int. J. Radiat. Biol. 87(4), 409–415 (2011)

    Article  Google Scholar 

  7. Sage C, Carpenter D (Eds.) A scientific perspective on health risk of electromagnetic fields. Published online 31 August 2007 at: http://www.bioinitiative.org/report/index.htm

  8. Sahu, S., Ghosh, S., Fujita, D., Bandyopadhyay, A.: Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule. Sci. Rep. 4, 7303 (2014)

    Article  Google Scholar 

  9. Sahu, S., Ghosh, S., Hirata, K., Fujita, D., Bandyopadhyay, A.: Multi-level memory-switching properties of a single brain microtubule. Appl. Phys. Lett. 102, 123701 (2013)

    Article  Google Scholar 

  10. Sahu, S., Ghosh, S., Ghosh, B., Aswani, K., Hirata, K., Fujita, D., Bandyopadhyay, A.: Atomic water channel controlling remarkable properties of a single brain microtubule: correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 47, 141–148 (2013)

    Article  Google Scholar 

  11. Watson, J.D., Crick, F.C.H.: Molecular structure of nucleic acids, a structure for deoxyribonucleic acids. Nature 171, 737–738 (1993)

    Article  Google Scholar 

  12. Dewarrat, F. C.: Electric characterization of DNA thesis (2002). https://nanoelectronics.unibas.ch/…/theses/Dewarrat-PhD-Thesis.pdf

  13. Flock, S., Labarbe, R., Houssier, C.: Dielectric constant and ionic strength effects on DNA precipitation. Biophys. J. 70, 1456–1465 (1996)

    Google Scholar 

  14. Thomson William, T., Dahleh Dillon, M.: Theory of vibration with applications. 5th edition (1998)

    Google Scholar 

  15. Moleron, M., Leonard, A., Daraio, C.: Solitary waves in a chain of repelling magnets. J. Appl. Phys. 115, 184901 (2014)

    Article  Google Scholar 

  16. Friesecke, G., Pego, R.: Nonlinearity 12, 1601 (1999)

    Article  MathSciNet  Google Scholar 

  17. Reshetnyak, S.A., Shcheglov, V.A., Blagodatskikh, V.I., Gariaev, P.P., Maslov, MYu.: Mechanisms of interaction of electromagnetic radiation with a biosystem. Laser Phys. 6(4), 621–653 (1996)

    Google Scholar 

  18. Zaks, M.: Fractal fourier spectra in dynamic system. Instituted fur Physik (2001). https://publishup.uni-potsdam.de/opus4-ubp/files/145/zaks.pd

Download references

Acknowledgement

J.E. Lugo thanks the magnetophotonics material SEP-PRODEP grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, P. et al. (2018). DNA as an Electromagnetic Fractal Cavity Resonator: Its Universal Sensing and Fractal Antenna Behavior. In: Pant, M., Ray, K., Sharma, T., Rawat, S., Bandyopadhyay, A. (eds) Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, vol 584. Springer, Singapore. https://doi.org/10.1007/978-981-10-5699-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5699-4_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5698-7

  • Online ISBN: 978-981-10-5699-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics