Advertisement

DNA as an Electromagnetic Fractal Cavity Resonator: Its Universal Sensing and Fractal Antenna Behavior

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 584)

Abstract

We report that 3D-A-DNA structure behaves as a fractal antenna, which can interact with the electromagnetic fields over a wide range of frequencies. Using the lattice details of human DNA, we have modeled radiation of DNA as a helical antenna. The DNA structure resonates with the electromagnetic waves at 34 GHz, with a positive gain of 1.7 dBi. We have also analyzed the role of three different lattice symmetries of DNA and the possibility of soliton-based energy transmission along the structure.

Keywords

Biological living system Antenna DNA vibration 

Notes

Acknowledgement

J.E. Lugo thanks the magnetophotonics material SEP-PRODEP grant.

References

  1. 1.
    Xing, H., Wilkerson, D.C., Mayhew, C.N., Lubert, E.J., Skaggs, H.S., Goodson, M.L., Hong, Y., Park-Sarge, O.K., Sarge, K.D.: Mechanism of HSP 70i gene bookmarking. Science 307, 421–423 (2005)CrossRefGoogle Scholar
  2. 2.
    O’Carroll, M.J., Henshaw, D.L.: Aggregating epidemiological evidence: comparing two seminal EMF reviews. Risk Anal. 28, 225–234 (2008)CrossRefGoogle Scholar
  3. 3.
    Alexandrov, B.S., Gelev, V., Bishop, A.R., Usheva, A., Rasmussen, K.O.: DNA breathing dynamics in the presence of a terahertz field. 29 October 2009. http://arxiv.org/abs/0910.5294
  4. 4.
    Adair, R.K.: Vibration resonances in biological systems at microwave frequencies. Biophys. J. 82(3), 1147–1152 (2002)CrossRefGoogle Scholar
  5. 5.
    Meyl, K.: DNA and cell resonance: magnetic waves enable cell communication. DNA Cell Biol. 31(4), 422–426 (2012)CrossRefGoogle Scholar
  6. 6.
    Blank, M., Goodman, R.: DNA is a fractal antenna in electromagnetic fields. Int. J. Radiat. Biol. 87(4), 409–415 (2011)CrossRefGoogle Scholar
  7. 7.
    Sage C, Carpenter D (Eds.) A scientific perspective on health risk of electromagnetic fields. Published online 31 August 2007 at: http://www.bioinitiative.org/report/index.htm
  8. 8.
    Sahu, S., Ghosh, S., Fujita, D., Bandyopadhyay, A.: Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule. Sci. Rep. 4, 7303 (2014)CrossRefGoogle Scholar
  9. 9.
    Sahu, S., Ghosh, S., Hirata, K., Fujita, D., Bandyopadhyay, A.: Multi-level memory-switching properties of a single brain microtubule. Appl. Phys. Lett. 102, 123701 (2013)CrossRefGoogle Scholar
  10. 10.
    Sahu, S., Ghosh, S., Ghosh, B., Aswani, K., Hirata, K., Fujita, D., Bandyopadhyay, A.: Atomic water channel controlling remarkable properties of a single brain microtubule: correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 47, 141–148 (2013)CrossRefGoogle Scholar
  11. 11.
    Watson, J.D., Crick, F.C.H.: Molecular structure of nucleic acids, a structure for deoxyribonucleic acids. Nature 171, 737–738 (1993)CrossRefGoogle Scholar
  12. 12.
    Dewarrat, F. C.: Electric characterization of DNA thesis (2002). https://nanoelectronics.unibas.ch/…/theses/Dewarrat-PhD-Thesis.pdf
  13. 13.
    Flock, S., Labarbe, R., Houssier, C.: Dielectric constant and ionic strength effects on DNA precipitation. Biophys. J. 70, 1456–1465 (1996)Google Scholar
  14. 14.
    Thomson William, T., Dahleh Dillon, M.: Theory of vibration with applications. 5th edition (1998)Google Scholar
  15. 15.
    Moleron, M., Leonard, A., Daraio, C.: Solitary waves in a chain of repelling magnets. J. Appl. Phys. 115, 184901 (2014)CrossRefGoogle Scholar
  16. 16.
    Friesecke, G., Pego, R.: Nonlinearity 12, 1601 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Reshetnyak, S.A., Shcheglov, V.A., Blagodatskikh, V.I., Gariaev, P.P., Maslov, MYu.: Mechanisms of interaction of electromagnetic radiation with a biosystem. Laser Phys. 6(4), 621–653 (1996)Google Scholar
  18. 18.
    Zaks, M.: Fractal fourier spectra in dynamic system. Instituted fur Physik (2001). https://publishup.uni-potsdam.de/opus4-ubp/files/145/zaks.pd

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Amity School of Applied ScienceAmity University RajasthanJaipurIndia
  2. 2.Visual Perception and Psychophysics Laboratory, School of OptometryUniversite de MontrealMontrealCanada
  3. 3.Manipal UniversityJaipurIndia
  4. 4.Natural Products Chemistry DivisionCSIR-North East Institute of Science & TechnologyJorhatIndia
  5. 5.Advanced Key Technologies Division, Advanced Nano Characterization CenterNational Institute for Materials ScienceTsukubaJapan

Personalised recommendations