Advertisement

Frequency Fractal Behavior in the Retina Nano-Center-Fed Dipole Antenna Network of a Human Eye

  • P. Singh
  • R. Doti
  • J. E. Lugo
  • J. Faubert
  • S. Rawat
  • S. Ghosh
  • K. RayEmail author
  • A. Bandyopadhyay
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 584)

Abstract

The retina nano-antenna shows a major characteristic of the center-fed dipole antenna’s working in the visible region. The cellular assembly that might work as a network of antennas is analyzed here. The collective response of various cone cells holds the geometric features of the antenna network. The fractal arrangement of the antenna lattice holds various symmetries during electromagnetic signal processing, and each symmetry generates a peak in the resonance band. Using true biological structural data, we have identified the resonance frequency spectrum of entire nano-network of cone and rod cells in a human eye.

Keywords

Bio-inspired antenna Result analysis 

Notes

Acknowledgement

J.E. Lugo thanks the magnetophotonics material SEP-PRODEP grant.

References

  1. 1.
    Sahu, S., Ghosh, S., Fujita, D., Bandyopadhyay, A.: Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule. Sci. Rep. 4, 7303 (2014)CrossRefGoogle Scholar
  2. 2.
    Sahu, S., Ghosh, S., Hirata, K., Fujita, D., Bandyopadhyay, A.: Multi-level memory-switching properties of a single brain microtubule. Appl. Physicslett. 102, 123701 (2013)Google Scholar
  3. 3.
    Sahu, S., Ghosh, S., Ghosh, B., Aswani, K., Hirata, K., Fujita, D., Bandyopadhyay, A.: Atomic water channel controlling remarkable properties of a single brain microtubule: correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 47, 141–148 (2013)CrossRefGoogle Scholar
  4. 4.
    de Pomerai, D.I., Daniells, C., David, H., Allan, J., Duce, I., Mutwakil, M., Thomas, D., Sewell, P., Tattersall, J., Jones, D.: Non-thermal heat-shock response to microwaves. Nature 6785, 417–418 (2000)CrossRefGoogle Scholar
  5. 5.
    Goodman, R., Blank, M., Lin, H., Khorkova, O., Soo, L., Weisbrot, D., Henderson, A.S.: Increased levels of hsp70 transcripts are induced when cells are exposed to low frequency electromagnetic fields. Bioelectrochem. Bioenerg. 33, 115–120 (1994)CrossRefGoogle Scholar
  6. 6.
    Goodman, R., Henderson, A.S.: Exposure of salivary gland cells to low frequency electromagnetic fields alters polypeptide synthesis. Proc. Nat. Acad. Sci. (US) 85, 3928–3932 (1998)CrossRefGoogle Scholar
  7. 7.
    O’Carroll, M.J., Henshaw, D.L.: Aggregating epidemiological evidence: comparing two seminal EMF reviews. Risk Anal. 28, 225–234 (2008)CrossRefGoogle Scholar
  8. 8.
    Newman, E. A.: Electrophysiology of retinal glial cells. Eye Research Institute of Retina Foundation, 20 Staniford Street, Boston, MA 02114, USAGoogle Scholar
  9. 9.
    Baylor, J.D.A., Fuortes, M.G.F., O’bryan, P.M.: Receptive fields of cones in the retina of the turtle. J. Physiol. 214, 265–294 (1971)CrossRefGoogle Scholar
  10. 10.
    Sekuler, R., Blake, R.: Perception, Second Edition. (1990). ISBN 0-07-056065-X McGraw-HillGoogle Scholar
  11. 11.
    The Interaction between Light and Matter. www.springer.com/cda/content/…/cda…/9783642322600-c1.pdf
  12. 12.
    Rotanowska, M., Sarna, Y.: Light-induced damage to the retina: role of rhodopsin chromophore revisited. Photochem. Photobiol. 81, 1305–1330 (2005). doi: 10.1562/2004-11-13-1R3-371 CrossRefGoogle Scholar
  13. 13.
    Saari, J.C., Garwin, G.G., Van Hooser, J.P., Palczewski, K.: Reduction of all-trans-retinal limits regeneration of visual pigment in mice. Vis. Res. 38, 1325–1333 (1998)CrossRefGoogle Scholar
  14. 14.
    Marc, T. L.: Visual Processing by the Retina. www.weizmann.ac.il/neurobiology/labs/…/kandel_ch26_retina.pdf
  15. 15.
    Kalal, J. W.: Biological Psychology, Fifth Edition. North Carolina State University (1995). ISBN 0-534-21108-9Google Scholar
  16. 16.
    Elliott, R.S.: Antenna Theory and Design, Revised Edition. IEEE Antenna & Propagation Society, Sponsor (2006)Google Scholar
  17. 17.
    Canbay, C., Unal, I.: Electromagnetic modeling of retinal photoreceptors. Prog. Electromagn. Res. PIER 83, 353–374 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • P. Singh
    • 1
  • R. Doti
    • 2
  • J. E. Lugo
    • 2
  • J. Faubert
    • 2
  • S. Rawat
    • 3
  • S. Ghosh
    • 4
  • K. Ray
    • 1
    Email author
  • A. Bandyopadhyay
    • 5
  1. 1.Amity School of Applied ScienceAmity University RajasthanJaipurIndia
  2. 2.Visual Perception and Psychophysics Laboratory, School of OptometryUniversite de MontrealMontrealCanada
  3. 3.Manipal UniversityJaipurIndia
  4. 4.Natural Products Chemistry DivisionCSIR-North East Institute of Science & TechnologyJorhatIndia
  5. 5.Advanced Key Technologies Division, Advanced Nano Characterization CenterNational Institute for Materials ScienceTsukubaJapan

Personalised recommendations