Carbon Composites

  • Shouyang Zhang
  • Yulei Zhang
  • Aijun Li
  • Qiang Chen
  • Xiaohong Shi
  • Jianfeng Huang
  • Zhibiao Hu


Carbon/carbon (C/C) composites with a carbon matrix reinforced by carbon fibers were an accidental discovery. In 1958, researchers from the Chance Vought Aircraft, Inc., made an operational mistake when measuring the fiber content in carbon/phenolic composites.


  1. 1.
    Huahui C, Haijin D, Ming, L et al (1998) Advanced composite material. China Substances Press: Beijing (in Chinese)Google Scholar
  2. 2.
    Hejun L (2001) Carbon-Carbon Composites. New Carbon Mater 16(2):79–80 (in Chinese)Google Scholar
  3. 3.
    Fitzer E, Manocha L. M (1998) Carbon reinforcements and carbon/carbon composites. Springer-Verlag, BerlinGoogle Scholar
  4. 4.
    Thomas C. R (1993) Essentials of carbon-carbon composites. Royal Society of Chemistry, CambridgeGoogle Scholar
  5. 5.
    Jiecai H, Xiaodong H, Shanyi D (1994) Research and application of carbon-carbon composites I. Aerosp mater technol 24(4):1–5 (in Chinese)Google Scholar
  6. 6.
    Yi L, Junshan W (2000) Development of Carbon matrix precursors for Carbon-Carbon Composite Materials. Aerosp mater technol 5:6–9 (in Chinese)Google Scholar
  7. 7.
    Torsten W, Gordon B (1997) Carbon-carbon composites: a summary of recent developments and applications. Mater Des 18(1):11–15CrossRefGoogle Scholar
  8. 8.
    Economy J, Jung H, Gogeva T (1992) A one-step process for fabrication of carbon-carbon composites. Carbon 30(1):81–85CrossRefGoogle Scholar
  9. 9.
    Chung DDL (1994) Carbon fiber composites. Butterworth-heinemann, NewtonGoogle Scholar
  10. 10.
    Savage G (1993) Carbon-Carbon composites. Chapman & Hall, LondonCrossRefGoogle Scholar
  11. 11.
    Lewis IC (1980) Thermal polymerization of aromatic hydrocarbons. Carbon 18(3):191–196CrossRefGoogle Scholar
  12. 12.
    Ryuji F, Takashi K, Koichi K (1993) Evaluation of naphthalene-derived mesophase pitches as a binder for carbon-carbon composites. Carbon 31(1):97–102CrossRefGoogle Scholar
  13. 13.
    Bhatla G, Fitzer E, Kompalik D (1986) Mesophase formation in defined mixtures of coal tar pitch fractions. Carbon 24(4):489–494CrossRefGoogle Scholar
  14. 14.
    Kanno K, Fernandez JJ, Fortin F et al (1997) Modifications to carbonization of mesophase pitch by addition of carbon blacks. Carbon 35(10–11):1627–1637CrossRefGoogle Scholar
  15. 15.
    Shenghua L, Wenjie L, Yajie Z (1993) Progress in the carbonaceous mesophase research (П). Nematic Liquid Crystals and the carbonaceous mesophase. Carbon 3:7–12 (in Chinese)Google Scholar
  16. 16.
    Marsh H, Escandell MM (1999) Reinoso F R. Semicokes from pitch pyrolysis: mechanisms and kinetics. Carbon 37(3):363–390CrossRefGoogle Scholar
  17. 17.
    Lemin S, Hejun L (2000) The process and microstructure of pitch based Carbon – Carbon Composites by LPIC. Mech Sci Technol Aerosp Eng 19(2):278–280 (in Chinese)Google Scholar
  18. 18.
    Palmer K R, Marx D T (1996) Carbon and Carbonaceous Composite. Materials World Scientific, London,p 409Google Scholar
  19. 19.
    Fernandez JJ, Figueiras A, Granda M et al (1995) Modification of coal-tar pitch by air-blowing: I. Variation of pitch composition and properties. Carbon 33(3):295–307CrossRefGoogle Scholar
  20. 20.
    White JL, Sheaffer PM (1989) Pitch-based processing of carbon–carbon composites. Carbon 27(5):697–707CrossRefGoogle Scholar
  21. 21.
    Kostikov V I (1995) Ceramic-and carbon-matrix composites. Chapman & Hall, London, p 305Google Scholar
  22. 22.
    Hejun L, Lemin S (2000) Research on carbonization mechanism of coal-tar pitch under high pressure. 1st World Conference on Carbon. Berlin, German, JulyGoogle Scholar
  23. 23.
    Linyuan L, Kangli W (1991) Some questions of Carbon-Carbon Composites in research, production and usage. J Solid Rocket Technol 3:99–104 (in Chinese)Google Scholar
  24. 24.
    Kaae JL (1985) The mechanism of the deposition of pyrolytic carbons. Carbon 23(6):665–673CrossRefGoogle Scholar
  25. 25.
    Wei-gang Z, Huttinger KJ (2001) Chemical vapor infiltration of Carbon - Revised Part П: experimental result. Carbon 39(7):1023–1032CrossRefGoogle Scholar
  26. 26.
    Hu Z, Schoch G, Hüttinger KJ (2000) Chemistry and kinetics of chemical vapor infiltration of pyrocarbon: VII: infiltration of capillaries of equal size. Carbon 38(7):1059–1065CrossRefGoogle Scholar
  27. 27.
    Zijun H, Klaus J (2001) Hüttinger Chemistry and kinetics of chemical vapor deposition of pyrocarbon: VIII. Carbon deposition from methane at low pressures. 39(3):433–441Google Scholar
  28. 28.
    Hee-Dong P, Hyeok-Je J, Young-Min C et al (1994) Processing parameters of pulse CVI in C/C composites. Ceram Trans 46:155–163Google Scholar
  29. 29.
    Jeong HJ, Park HD, Lee JD (1996) Densification of Carbon-Carbon Composites by Pulse Chemical Vapor Infiltration. Carbon 34(3):417–421CrossRefGoogle Scholar
  30. 30.
    Glocki, RCM (1995) Rapid densification of carbon- carbon by thermal-gradient chemical vapor Infiltration. Ceram Eng Sci Proc 16(4):315–322Google Scholar
  31. 31.
    Golecki I, Morris RC, Narasimhan D (1994) Method of rapidly densifying a porous structure. P. US Patent: 5348774Google Scholar
  32. 32.
    Sundar V, Lackey WJ, Garth BF, Pradeep KA, Matthew DL (1995) Fabrication of carbon-carbon composites by forced flow-thermal gradient chemical vapor infiltration. J Mater Res 10(6):1469–1477CrossRefGoogle Scholar
  33. 33.
    Vaidyaraman S, Lackey WJ, Agrawal PK, Garth B (1995) Freeman. Forced flow-thermal gradient chemical vapor infiltration for fabrication of carbon/carbon. Carbon 33(9):1211–1215Google Scholar
  34. 34.
    Lewis JS, Lackey WJ, Vaidyaraman S (1997) Model for prediction of matrix microstructure for carbon/carbon composites prepared by forced flow-thermal gradient CVI. Carbon 35(1):103–112CrossRefGoogle Scholar
  35. 35.
    Bertrand S, Lavaud JF, Hadi RE, Vignoles G, Pailler R (1998) The thermal gradient-pulse flow CVI process: A new chemical vapor infiltration technique for the densification of fibre performs. J Eur Ceram Soc 18(7):857–870CrossRefGoogle Scholar
  36. 36.
    Wenchuan L, Jingyi, D, Haifeng, D, Fang, L (1999) A rapid fabrication process of C/C composites. P. Chinese Patent:99122649.6Google Scholar
  37. 37.
    Houdayer M, Spitz J, Tran-Van D (1984) Process for the densification of a porous structure. P. US Patent: 4472454Google Scholar
  38. 38.
    Wanchang S, Hejun L, Shouyang Z et al (2002) Progress in rapid liquid-vaporized densification processing for fabricating C/C Composites. J Chin Ceram Soc 30(4):513–516 (in Chinese)Google Scholar
  39. 39.
    Li K, Li H, Jiang K, Hou X (2000) Numerical simulation of isothermal chemical vapor infiltration process in fabrication of carbon-carbon composites by finite element method. Sci China Ser E: Technol Sci 43(1):77–85CrossRefGoogle Scholar
  40. 40.
    Zhang W, Hüttinge KJ (2001) Chemical vapor infiltration of carbon – revised: Part I: Model simulations. Carbon 39(7):1013–1022CrossRefGoogle Scholar
  41. 41.
    Dekker JP, Moene R, Schoonman J (1996) The influence of surface kinetics in modelling chemical vapour deposition processes in porous performs. J Mater Sci 31:3021–3033CrossRefGoogle Scholar
  42. 42.
    Fitzer E, Hegen D (1979) Chemical vapor deposition of Silicon Carbide and Silicon Nitride—Chemistry’s contribution to modern Silicon Ceramics. Angew Chem, Int Ed Engl 18(4):295–304CrossRefGoogle Scholar
  43. 43.
    Brekel C.H.J. van den, Fonville R M M, Straten P J M Van Der, Verspui G (1981) In:Blocher J M Jr and Vuitlard G E (eds) Proceedings of the 8th International Conference on Chemical Vapour Deposition. (The Electrochemical Society, Pennington) 81–7, 412Google Scholar
  44. 44.
    Rossignol JY, Langlais F, Naslain R (1984) In: Robinson, M (ed) Proceedings of the 9th International Conference on Chemical Vapour Deposition, Seattle, USA, 1984. (The Electrochemical Society, Pennington) 84–7 596Google Scholar
  45. 45.
    Moene R, Dekker JP, Makkee M, Schoonman J, Moulijn JA (1994) Evaluation of isothermal chemical vapor infiltration with Langmuir-Hinshelwood type kinetics. J Electrochem Soc 141(1):282–290CrossRefGoogle Scholar
  46. 46.
    Lin YS, Burggraaf AF (1991) Modelling and analysis of CVD processes in porous media for ceramic composite preparation. Chem Eng Sci 46(12):3067–3080CrossRefGoogle Scholar
  47. 47.
    Lin YS (1990) In: Spear KE, Cullen GW (eds), Proceedings of the 11th International Conference on Chemical Vapour Deposition, Seattle, USA, 1990, (The Electrochemical Society, Pennington) 90–12, 532Google Scholar
  48. 48.
    Fedou R, Ais FL, Naslain R (1990) In: Spear KE, Cullen GW (eds) Proceedings of the 11th International Conference on Chemical Vapour Deposition, Seattle, USA, 1990, (The Electrochemical Society, Pennington) 90–12, 513Google Scholar
  49. 49.
    Currier RP (1990) Overlap model for chemical vapor infiltration of fibrous yarn. J Am Ceram Soc 73(8):2274–2280CrossRefGoogle Scholar
  50. 50.
    Mcallister P, Wolf EE (1991) Modeling of chemical vapor infiltration of Carbon in porous carbon substrates. Carbon 29(3):387–396CrossRefGoogle Scholar
  51. 51.
    Mcallister P, Wolf EE (1993) Simulation of a multiple substrate reactor for chemical vapor infiltration of pyrolytic Carbon with Carbon-Carbon Composites. AIChE J 39(7):1196–1209CrossRefGoogle Scholar
  52. 52.
    Gupte SM, Tsamopoulos JA (1989) Tsamopoulos. Densification of porous materials by chemical vapor infiltration. J Electrochem Soc 136(2):555–561Google Scholar
  53. 53.
    Tai NH, Chou TW (1989) Analytical modeling of chemical vapor infiltration in fabrication of Ceramic Composites. J Am Ceram Soc 72(3):414–420CrossRefGoogle Scholar
  54. 54.
    Starr TL (1995) Gas transport model for Chemical Vapor Infiltration. J Mater Res 10(9):2360–2366CrossRefGoogle Scholar
  55. 55.
    Hou X, Li H, Chen Y, Li K (1999) Modeling of Chemical Vapor Infiltration process for fabrication of Carbon -Carbon Composites by Finite Element Method. Carbon 34(4):699–671Google Scholar
  56. 56.
    Aijun Li, Hejun Li, Kezhi Li et al (2003) Modeling of CVI process in fabrication of carbon/carbon composites by an artificial neural network. Sci China (Series E) 33(3):209–216 (in Chinese)Google Scholar
  57. 57.
    Zhengbin G, Hejun Li, Kezhi Li et al (2003) Simulation and visualization of isothermal CVI processes of Carbon/Carbon Composites. J Northwest Polytechnical Univ 21(3):360–363 (in Chinese)Google Scholar
  58. 58.
    Kaiyu J, Hejun Li, Kezhi Li et al (2000) Numerical simulation of thermal-gradient CVI process for C/C Composites. Acta Materiae Compositae Sinica 17(4):84–87 (in Chinese)Google Scholar
  59. 59.
    Kaiyu J, Hejun Li, Minjie W (2002) The numerical simulation of thermal-gradient CVI process on positive pressure condition. Mater Lett 54:419–423CrossRefGoogle Scholar
  60. 60.
    Vaidyaramana S, Lackey WJ, Agrawal PK, Starr TL (1996) 1-D model for forced flow-thermal gradient chemical vapor infiltration process for carbon/carbon composites. Carbon 34(9):1123–1133CrossRefGoogle Scholar
  61. 61.
    Gupte SM, Tsamopoulos JA (1990) An Effective Medium Approach for Modeling Chemical Vapor Infiltration of Porous Ceramic Materials. J Electrochem Soc 137(5):1626–1638CrossRefGoogle Scholar
  62. 62.
    Gupte SM, Tsamopoulos JA (1990) Forced-flow chemical vapor infiltration of porous ceramic materials. J Electrochem Soc 137(11):3675–3682CrossRefGoogle Scholar
  63. 63.
    Lewis JS, Lackey WJ (1997) Model for prediction of matrix microstructure for carbon-carbon composites prepared by forced flow-thermal gradient CVI. Carbon 35(1):103–112CrossRefGoogle Scholar
  64. 64.
    Kaiyu J, Hejun L (1999) Mathematical model of numerical simulation of CVI process for carbon and ceramic matrix Composites. Aerosp Mater Technol 3:42–45 (in Chinese)Google Scholar
  65. 65.
    Rominillain D, Trinquecoste M, Derre A et al (2000) Abstract and programme oral presentations, Eurocarbon 2000, 245 246, 1st World Conference on Carbon 9–13, Vol 1. July, BerlinGoogle Scholar
  66. 66.
    Fitzer E, Manocha LM (1998) Carbon reinforcements and Carbon-Carbon Composites. Spinger – Verlag, HeidelbergCrossRefGoogle Scholar
  67. 67.
    Fitzer E, Huttner W (1981) Structure and strength of carbon/carbon composites. J Phys D Appl Phys 14:347–371CrossRefGoogle Scholar
  68. 68.
    LM MANOCHA. High performance carbon-carbon composites. Sadhana, 28 (Parts 1 & 2) : 349–358Google Scholar
  69. 69.
    Hatta H, Goto K, Aoki T (2005) Strengths of C/C composites under tensile, shear, and compressive loading: Role of interfacial shear strength. Compos Sci Technol 65:2550–2562CrossRefGoogle Scholar
  70. 70.
    Guess TR, Hoover WR (1973) Fracture toughness of Carbon-Carbon Composites. J Compos Mater 7(1):2–20CrossRefGoogle Scholar
  71. 71.
    Moet A, Minick J (1991) Fracture Toughness of Carbon/Carbon Composites. ADA240200 Final rept. 1 Apr 89-30 JunGoogle Scholar
  72. 72.
    Savage G (1993) Carbon-Carbon composites. Chapman & Hall, LondonCrossRefGoogle Scholar
  73. 73.
    Hatta H, Kogo Y, Tanimoto T, Morii T(1995). Static and fatigue fracture behavior of C/C composites. In: Proc of fourth Japan Int SAMPE Symposium, p. 368–73Google Scholar
  74. 74.
    Allaron C, Rouby D, Reynaud P, Fantozzi G (1999) Improvement of cyclic fatigue analysis by the use of a tensile master curve in carbon/carbon composites Key Eng Mater (164–165), pp. 329–332Google Scholar
  75. 75.
    Ozturk A, Moore RE (1992) Tensile fatigue behavior of tightly woven carbon–carbon composites. Composites 23:39–46CrossRefGoogle Scholar
  76. 76.
    Han HM, Li HJ, Wei JF et al (2003) Micro-pleating in Carbon-Carbon Composites under a cyclic load. Science In China (Series E) 33(7):614–618 (in Chinese)Google Scholar
  77. 77.
    Liao L, Li J, Xu F, Kzh L (2008) Effects of tensile fatigue loads on flexural behavior of 3D braided C/C composites. Compos Sci Technol 68(2):333–336CrossRefGoogle Scholar
  78. 78.
    Luo RY, Li HJ, Yang Zh et al (1995) Brake properties in damp condition of C/C Composites aeroplane brake discs. Carbon Techn 5:25 (in Chinese)Google Scholar
  79. 79.
    Han HM, Zhang XL, Li HJ et al (2003) Me chanical Behaviors of Carbon -Carbon Composites under the High-temperature. New Carbon Mater 18(1):20–24 (in Chinese)Google Scholar
  80. 80.
    Chen J, Long Y, Xiong Xi, Xiao P (2012) Microstructure and thermal conductivity of carbon/carbon composites made with different kinds of carbon fibers. J. Cent. South Univ. 19:1780–1784CrossRefGoogle Scholar
  81. 81.
    Luo Y, Liu T, Li JS, Zhang B, Chen Zhijun, Tian Guanglai (2004) Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity. Carbon 42(14):2887–2895CrossRefGoogle Scholar
  82. 82.
    Pierson HO (1993) Handbook of Carbon, Graphite, Diamond and Fullerenes. Noyes Publication, New JerseyGoogle Scholar
  83. 83.
    Bowers DA, Davis JW, Dinwiddie RB (1994) Development of 1-D carbon composites for plasma- facing components. J. Nucl Mater 212–215, Part 2: 1163–1167Google Scholar
  84. 84.
    Hao L, Li KZH, Li HJ, Lu JH, Zhai YQ (2007) Microstructure and mechanical properties of mesophase pitch-based C/C Composites. Rare Met Mater Eng 39(S3):331–334Google Scholar
  85. 85.
    Liu H, Li KZH, Li HJ, Lu JH, Zhai YQ (2008) Microstructure and mechanical properties of C/C Composites with a mesophase pitch transition layer. J Inorg Mater 23(3):486–490CrossRefGoogle Scholar
  86. 86.
    Chollon G, Siron O, Takahashi J, Yamauchi H, Maeda K, Kosaka K (2001) Microstructure and mechanical properties of coal tar pitch-based 2D-C/C composites with a filler addition. Carbon 39:2065–2075CrossRefGoogle Scholar
  87. 87.
    Matzinos PD, Patrick JW, Walker A (1996) Coal-tar pitch as a matrix precursor for 2D-C/C composites. Carbon 34:639–644CrossRefGoogle Scholar
  88. 88.
    Reznik B, Gerthsen D (2003) Microscopic study of failure mechanisms in infiltrated carbon fiber Felts. Carbon 41:57–69CrossRefGoogle Scholar
  89. 89.
    Reznik B, Huttinger KJ (2002) On the terminology for pyrolytic carbon. Carbon 40(4):620–624CrossRefGoogle Scholar
  90. 90.
    Diefendorf RJ, Tokarsky EW (1971) The relationships of structure to properties in graphite fibers. Air Force Report, AF33 (615)-70-C-1530Google Scholar
  91. 91.
    Bokros JC (1969) Deposition, structure, and properties of pyrolytic carbon. In Walker PL Jr. Chemistry and physics of carbon, Vol 5, New-York: Marcel Dekker:1–118Google Scholar
  92. 92.
    Oberlin A (2002) Pyrocarbons. Carbon 40:7–24CrossRefGoogle Scholar
  93. 93.
    Bourrat X, Trouvat B, Limousin G, Vignoles G (2000) Pyrocarbon anisotropy as measured by electron diffraction and polarized light. J Mater Res 5:92–101CrossRefGoogle Scholar
  94. 94.
    Bortchagovsky EG (2004) Reflection polarized light microscopy and its application to pyrolytic carbon deposits. J Appl Phys 95:5192CrossRefGoogle Scholar
  95. 95.
    Bourrat X (2001) Structure in carbons and different artifacts. In: Marsh H, F Rogriguez- Reinoso (eds) Sciences of carbon materials, Publicationes de la Universidad de Alicante, p. 1–98Google Scholar
  96. 96.
    Deng HB, Cui WL, Ma BX et al (1997) On optimal procedure for improving properties of Carbon Fiber. Journal Northwest Polytechnical Univ 15(2):325–326 (in Chinese)Google Scholar
  97. 97.
    Bahl OP, Mathre RB, Dhami TL et al (1999) Carbon -Carbon composites with pyrolytic carbon coated carbon fibers, Carbon’ 99, Extended Abstracts and Program, Vol 1, 42–43, Charleston, South CarolinaGoogle Scholar
  98. 98.
    Iwashita N, Psomiadou E, Sawada Y (1998) Effect of coupling treatment of carbon fiber surface on mechanical properties of carbon fiber reinforced carbon composites. Compos A 29(8):965–972CrossRefGoogle Scholar
  99. 99.
    Zhang XL, Xu ZH, Li HJ (2003) Effect of fiber surface pretreatment on the tensile strength of unidirectional Carbon-Carbon Composites. Mech, Sci Technol 22(3):484–486 (in Chinese)Google Scholar
  100. 100.
    Domnanovich A, Peterlik H, Kromp K (1996) Determination of interface parameters for carbon-carbon composites by the fibre-bundle pull-out test. Compos Sci Technol 56(9):1017–1029CrossRefGoogle Scholar
  101. 101.
    Han JC, Huang YD, He XD et al (1995) Characteristics of interfaces in 3D fine weave Carbon-Carbon Composites. Acta Materiae Compositae Sinica 12(4):72–78 (in Chinese)Google Scholar
  102. 102.
    Peng WZH, Yu Q, Pu TY, Zeng HM (1987) A study of interface structure of 3D carbon-carbon composites. J Astronaut 4:66–72Google Scholar
  103. 103.
    Shi R, Hu GX, Li HJ et al (1998) Interfacial microstructures of intrabundle in as-received Carbon-Carbon Composites prepared by CVI. Carbon 36(9):1331–1335CrossRefGoogle Scholar
  104. 104.
    Shi R (1997) Research on the microstructures and mechanical properties of carbon/carbon composites with pyrolytic carbon matrix. Ph.D. thesis, Northwestern Polytechnical University, Xi’an, People’s Republic of ChinaGoogle Scholar
  105. 105.
    Hou XH, Li HJ, Zhang SY et al (2001) Interface-like fracture mechanism in pyrolytic Carbon-Carbon Composites. Mater Lett 48(2):117–120CrossRefGoogle Scholar
  106. 106.
    Reznik B, Gerthsen D, Guellali M, et al (2001) Structure and properties of interfaces in infiltrated carbon fiber felts, Carbon 01(July):15–19, Lexington, USAGoogle Scholar
  107. 107.
    Sheehan JE, Buesking KW, Sullivan BJ (1994) Carbon- Carbon Composites. Annu Rev Mater Sci 24:19–44CrossRefGoogle Scholar
  108. 108.
    Westwood ME, Webster JD, Day RJ, Hayes FH, Taylor R (1996) Oxidation protection for Carbon Fiber Composites. J Mater Sci 31:1389–1397CrossRefGoogle Scholar
  109. 109.
    Jacobson NS, Roth DJ, Rauser RW, Cawley JD, Curry DM (2008) Oxidation through coating cracks of SiC-Protected Carbon/Carbon. Surf Coat Technol 203:372–383CrossRefGoogle Scholar
  110. 110.
    Smeacetto F, Ferraris M, Salvo M (2003) Multilayer coating with self-sealing properties for Carbon-Carbon Composites. Carbon 41:2105–2111CrossRefGoogle Scholar
  111. 111.
    Ho CT, Chung DDL (1990) Inhibition of the Oxidation of Carbon-Carbon Composites by Bromination. Carbon 28:815–824CrossRefGoogle Scholar
  112. 112.
    Li HJ, Zeng XR, Zhu XQ, Xu ZH (1999) On the Oxidation Resistance of Carbon-Carbon Composites. Carbon 3:2–7 (in Chinese)Google Scholar
  113. 113.
    Shemet VZh, Pomytkin AP, Neshpor VS (1993) High-temperature oxidation behaviour of Carbon Materials in air. Carbon 31:1–6CrossRefGoogle Scholar
  114. 114.
    Wu TM, Wei WC, Hsu SE (1993) Temperature dependence of the oxidation resistance of SiC coated Carbon/Carbon Composite. Mater Chem Phys 33:208–213CrossRefGoogle Scholar
  115. 115.
    Labruquere S, Blanchard H, Pailler R, Naslain R (2002) Enhancement of the oxidation resistance of interfacial area in C/C Composites. Part II: oxidation resistance of B-C, Si-B-C and Si-C coated Carbon performs densified with Carbon. J Eur Ceram Soc 22:1011–1021CrossRefGoogle Scholar
  116. 116.
    Yang ZSH, Wang Y (2001) Development of Aircraft C/C Composite Brake Material. Aeronautic Sci Technol 1:28–30 (in Chinese)Google Scholar
  117. 117.
    Cui H, Su JM, Li RZH et al (2000) On improving anti ablation property of multi matrix C/C to withstand 3700K. J Northwest Polytechnical Univ 18(4):669–673 (in Chinese)Google Scholar
  118. 118.
    Savage G (1993) Carbon-Carbon Composites. Chapman&Hall, London, pp 198–209CrossRefGoogle Scholar
  119. 119.
    Sheehan JE (1989) Oxidation protection for carbon Fiber Composites. Carbon 27(5):709–715CrossRefGoogle Scholar
  120. 120.
    Song YZH, Zai GT, Jinren S (2001) Study on Oxidation Behavior of Carbon Substrates Internally Modified by BN Additives. Aerosp Mater Technol 6:31–33 (in Chinese)Google Scholar
  121. 121.
    Zhu XQ, Yang Zh, Kang MK et al (1994) Effect of matrix modification on the oxidation resistance of Carbon-Carbon Composites. Acta Mater Compos Sinica 11:107–111 (in Chinese)Google Scholar
  122. 122.
    Liu QCH, Zhou SL, Xu XW (2002) Anti-oxidation mechanism of bindless Carbon-Carbon Composites. J Chem Ind Eng 53(11):1188–1192 (in Chinese)Google Scholar
  123. 123.
    Yang ZSH, Lu GR, Qu DQ (2001) Anti-oxidation of Phosphate and Boron contained coatings for C/C composites brake material. Mater Prot 34(3):12–13 (in Chinese)Google Scholar
  124. 124.
    Chen Q, Li HJ, Li KZH et al (2003) Neural network simulation on effect of burning rate of modified Carbon-Carbon Composites. J Xi’an Jiaotong Univ 37(3):249–251 (in Chinese)Google Scholar
  125. 125.
    Shen XT, Li KZ, Li HJ, Du HY, Cao W-F, Lan F-T (2010) Microstructure and ablation properties of Zirconium Carbide doped Carbon/Carbon Composites. Carbon 48:344–351CrossRefGoogle Scholar
  126. 126.
    Shen XT, Li KZ, Li HJ, Fu QG, Li SP, Deng F (2011) The effect of Zirconium Carbide on ablation of Carbon/Carbon Composites under an Oxyacetylene flame. Corros Sci 53(1):105–112CrossRefGoogle Scholar
  127. 127.
    Liu WCH, Deng JY, Du HF et al (1998) Microcosmic fabric character of C/C, C/C-SiC grads radix, Nanometer radix, Unit doublet radix C/C Composites. Sci China B 28(5):471–490 (in Chinese)Google Scholar
  128. 128.
    Cheng LF, Zhang LT, Han JT (1992) Development and status of oxidation protection coatings for C/C composites. High Technology Letters, 10 (in Chinese)Google Scholar
  129. 129.
    Dhami TL, Bahl OP, Awasthy BR (1995) Oxidation-resistant Carbon-Carbon Composites up to 1700 °C. Carbon 33(4):479–490CrossRefGoogle Scholar
  130. 130.
    Deal BE, Grove AS (1965) General relationship for the Thermal Oxidation of Silicon. J Appl Phys 36(12):3770–3778CrossRefGoogle Scholar
  131. 131.
    STRIFE JR, SHEEHAN JE (1988) Ceramic coating for Carbon-Carbon Composites. American Ceramic Society Bulletin 67(2):369–374Google Scholar
  132. 132.
    Jian-feng H, He-jun L, Xie-rong Z, Xin-bo X, Ye-Wei FU (2005) Progress on the oxidation protective coating of Carbon–Carbon Composites. J New Carbon Mater 20:373–379Google Scholar
  133. 133.
    Zhihuai X, Hejun L (2000) Orthogonal analysis of CVD SiC coating processing. Ordnance Mater Sci Eng 23(5):35–40 (in Chinese)Google Scholar
  134. 134.
    Debrunner RE, Clements PC (1973) Method of protecting carbonaceous material from oxidation at high temperature. United States Patent 3713882. Jan 30Google Scholar
  135. 135.
    Strater HH (1970) Oxidation resistant Carbon-Carbon Composites. United States Patent 3510347. May 5Google Scholar
  136. 136.
    Wilson WF (1974) Oxidation retardant for graphite. United States Patent 4439491. Mar 29Google Scholar
  137. 137.
    Yi M zh, Ge Yichg, Peng Ch L et al (2002) Effect of pre-impregnation on anti-oxidation of Carbon/Carbon Composite for Airplane Brake Disc. Chin J Nonferrous Met 12(2):260–263 (in Chinese)Google Scholar
  138. 138.
    Liu B, Yi MZH, Xiong X et al (2000) Preparation of oxidation resistant coatings for Carbon/Carbon Composites Aircraft Brake Pairs. Chin J Nonferrous Met 10(6):864–867 (in Chinese)Google Scholar
  139. 139.
    Cheng LF, Zhang LT (1996) Investigation of liquid spreading out in the preparation of oxidation protection coating for C/C by Liquid Reaction-Formation Method. Acta Aeronautic Et Astronautic Sinica 17(4):508–510 (in Chinese)Google Scholar
  140. 140.
    Cheng LF, Zhang LT (1992) New technology of anti-oxidation coating preparation for C/C Composites: Fluid generation method. Chin High Technol Lett 2(9):4–7 (in Chinese)Google Scholar
  141. 141.
    Huang JF, Li HJ, Zeng XR, Li KZH, Xiong XB, Huang M et al (2004) A New SiC/Yttrium Silicate/Glass Multi-layer oxidation protective coating for Carbon/Carbon Composites. Carbon 42(11):2356–2359Google Scholar
  142. 142.
    Huang JF, Zeng XR, Li HJ, Xiong XB, Fu YW, Huang M (2004) SiC/yttrium silicate multi-layer coating for oxidation protection of Carbon/Carbon Composites. J Mater Sci 39(24):7383–7385CrossRefGoogle Scholar
  143. 143.
    Huang JF, Zeng XR, Li HJ et al (2003) ZrO2- SiO2 Gradient anti-oxidation coating for SiC Coated Carbon-Carbon Composites by the solgel process Carbon’ 3(July): 6–10 Oviedo, SpainGoogle Scholar
  144. 144.
    Philip L. Berneburg et al (1991) Processing of Carbon/Carbon Composites using supercritical fluid technology. United States Patent 5035921. Jul 30Google Scholar
  145. 145.
    Huang JF, Zeng XR, Li HJ Xinbo, Fu et al (2004) Influence of the preparing temperature on phase, microstructure and anti-oxidation property of SiC coating for C/C Composites. Carbon 42(8–9):1517–1521Google Scholar
  146. 146.
    Chen MM (1996) Microstructure and oxidation resistance of SiC coated Carbon-Carbon Composites via pressless reaction sintering. J Mater Sci 31:649–654CrossRefGoogle Scholar
  147. 147.
    Joshi A, Lee JS (1995) Coating with particulate dispersions for high temperature oxidation protection of Carbon and C/C Composites. Composites (Part A) (4):181–189Google Scholar
  148. 148.
    Etesaikao A, Jie C (2002) Enhancing the anti-oxidation performance of C/C composites using CVD-SiC coating on the SiC blanket. Dian Tan 2:17–22 (in Chinese)Google Scholar
  149. 149.
    Zeng XR, Li HJ, Li L, Li AL (2002) Dynamic anti-oxidation behavior of MoSi2-SiC coating system for Carbon-Carbon Composites. Acta Materiae Compositae Sinica 19(6):43–46 (in Chinese)Google Scholar
  150. 150.
    Zeng XR, Li HJ, Yang Zh (1999) Effect of microstructure and component of MoSi2-SiC multilayer ceramic coating on oxidation resistance. J Chin Ceram Soci 27(1):8–15 (in Chinese)Google Scholar
  151. 151.
    Zeng XR, Li HJ, Yang Zh, Kang MK (2000) Investigation of microstructure for oxidation protection coated C/C composites. transactions of materials and heat treatment 21(2):64–67 (in Chinese)Google Scholar
  152. 152.
    Zeng XR, Li HJ, Zhang G et al (2000) Effect of microstructure and component on oxidation resistance of MoSi2-SiC multilayer ceramic coating. Acta Materiae Compositae Sinica. 17(2):42–45 (in Chinese)Google Scholar
  153. 153.
    Zeng XR, Zheng CQ, Li HJ, Changqing Z (1997) Investigation of oxidation protection system of MoSi2-SiC coating for Carbon-Carbon composites. Acta Aeronautic Et Astronautic Sinica 18(4):427–432 (in Chinese)Google Scholar
  154. 154.
    Zeng XR, Zheng CQ, Li HJ, Yang Zh (1997) Properties of oxidation resistant MoSi2 coating of Carbon/Carbon composites. Acta Materiae Compositae Sinica 114(3):37–40 (in Chinese)Google Scholar
  155. 155.
    ZHANG Yu-lei, LI He-jun, FU Qian-gang, LI Ke-zhi, WEI Jian, WANG Peng-yun (2006) A C/SiC gradient oxidation protective coating for Carbon/Carbon composites. Surf Coat Technol 201:3491–3495Google Scholar
  156. 156.
    Hou D, Li K, Li H, QiangangFu YZ (2008) SiC/Si-W-Mo coating for protection of C/C composites at 1873 K. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material. 15(6):822–826CrossRefGoogle Scholar
  157. 157.
    Fu QG, Li HJ, Shi XH, Liao XL, Li KZ, Huang M (2006) Microstructure and anti-oxidation property of CrSi2-SiC coating for Carbon/Carbon composites. Appl Surf Sci 252, p. 3475Google Scholar
  158. 158.
    Li H, Xue H, Wang Y-J et al (2007) A MoSi2-SiC-Si oxidation protective coating for Carbon/Carbon composites. Surf Coat Technol 201(24):9444–9447CrossRefGoogle Scholar
  159. 159.
    Zhu YC, Ohtani S, Sato Y et al (1998) The improvement in oxidation resistance of CVD-SiC coated C/C composites by Silicon infiltration pretreatment. Carbon 36(7–8):929–935CrossRefGoogle Scholar
  160. 160.
    Cheng LF, Zhang LT (1996) Preparation of gradient composite coating for high temperature and long life oxidation protection of Carbon-Carbon composites. Chin High Technol Lett 5:16–18 (in Chinese)Google Scholar
  161. 161.
    Cheng LF, Zhang LT, Xu YD (1997) Structure of the oxide film on the Si-W coating for C/C composites prepared by liquid reaction formation method. J Chin Ceram Soci 25(5):537–541 (in Chinese)Google Scholar
  162. 162.
    Huang Ji F, Zeng XR, Li HJ, Xiong XB, Huang M (2004) Al2O3-Mullite-SiC-Al4SiC4 multi-composition coating for Carbon/Carbon composites. Mater Lett 58:2627–2630CrossRefGoogle Scholar
  163. 163.
    Huang JF, Zeng XR, Li HJ, Xiong XB, Min H (2003) Mullite-Al2O3-SiC oxidation protective coating for Carbon-Carbon composites. Carbon 41(14):2825–2829CrossRefGoogle Scholar
  164. 164.
    Huanga JF, Li HJ, Zeng XR et al (2006) Preparation and oxidation kinetics mechanism of three-layer multi-layer-coatings-coated Carbon/Carbon composites. Surf Coat Technol 200(18–19):5379–5385Google Scholar
  165. 165.
    Zhangg YL, Li HJ, Fu QG, Zh Li K, Sh Hou D, Fei J (2007) A Si-Mo oxidation protective coating for C/SiC coated Carbon/Carbon composites. J Carbon 45(5):1130–1133CrossRefGoogle Scholar
  166. 166.
    Zhang YL, Li HJ, Fu QG et al (2008) An oxidation protective Si-Mo-Cr coating for C/SiC coated Carbon/Carbon composites. J Carbon 46(1):179–182Google Scholar
  167. 167.
    Feng T, Li HJ, Fu QG et al (2010) Microstructure and oxidation of multi-layer MoSi2-CrSi2-Si coatings for SiC coated carbon/carbon composites. Corros Sci 52(9):3011–3017Google Scholar
  168. 168.
    Li HJ, Feng T, Fu Q G et al (2010) Oxidation and erosion resistance of MoSi2- CrSi2-Si/SiC coated C/C composites in static and aerodynamic oxidation environment. Carbon 48(5):1636–1642Google Scholar
  169. 169.
    Fu QG, Li HJ, Shi XH, Li et al (2007) A SiC whisker-toughened SiC-CrSi2 oxidation protective coating for Carbon/Carbon composites. Appl Surf Sci 253(8):3757–3760Google Scholar
  170. 170.
    Li HJ, Fu QG, Shi XH, Li KZ, Hu ZB (2006) SiC whisker-toughened SiC oxidation protective coating for Carbon/Carbon composites. Carbon 44:602–605CrossRefGoogle Scholar
  171. 171.
    Fu QG, Li HJ, Zhang ZZ, Zeng XR, Li KZ (2010) SiC nanowire-toughened MoSi2-SiC coating to protect Carbon/Carbon composites against oxidation. Corros Sci 52:1879–1882CrossRefGoogle Scholar
  172. 172.
    Chu YH, Fu QG, Cao CW, Li HJ, Li et. al (2010) SiC nanowire-toughened SiC-MoSi2-CrSi2 oxidation protective coating for carbon/carbon composites. Surf Coat Technol 205(2):413–418Google Scholar
  173. 173.
    Chu YH, Li HJ, Fu QG et al (2012) Toughening by SiC Nanowires in a Dense SiC-Si Ceramic coating for oxidation protection of C/C Composites. J Am Ceram Soc 95(11):3691–3697CrossRefGoogle Scholar
  174. 174.
    Chu YH, Fu QG, Li HJ et al (2010) Influence of SiC nanowires on the properties of SiC coating for C/C composites between room temperature and 1500 °C. Surf Coat Technol 205(2):413Google Scholar
  175. 175.
    Buchanan FJ, Little JA (1993) Glass sealants for Carbon-Carbon composites. J Mater Sci 28:2324–2330CrossRefGoogle Scholar
  176. 176.
    Smeacetto F, Ferraris M, Salvo M (2003) Multilayer coating with self-sealing properties for Carbon-Carbon composites. Carbon 41(11):2105–2111CrossRefGoogle Scholar
  177. 177.
    Smeacetto F, Salvo M, Ferraris M (2002) Oxidation protective multilayer coatings for Carbon-Carbon composites. Carbon 40(4):583–587CrossRefGoogle Scholar
  178. 178.
    Xiao ZH (1999) Experiment on Ceramic flat filter binded by Aluminium Phosphate colloid for Cast Steel. Foundry Technol 2:22–24 (in Chinese)Google Scholar
  179. 179.
    Li HJ, Luo RY, Yang Zh (1997) The status and future on research and application about Carbon/Carbon composites in the Aeronautical area. J Mater Eng 8:8–10 (in Chinese)Google Scholar
  180. 180.
    Liu YQ, Li RL (2001) Status in Carbonaceous Brake on Civil Aircraft and Development of its prefabrication. Civ Aircr Des Res 3:27–30 (in Chinese)Google Scholar
  181. 181.
    Liu W Ch, Deng JY (2001) C/C composite market research. Mater Rev 11(2):13–16 (in Chinese)Google Scholar
  182. 182.
    Yang ZSh, Lu GR, Qu DQ (2001) Anti- oxidation of Phosphate and Boron contained coatings for C/C composites brake material. Mater Prot 34(3):12–13 (in Chinese)Google Scholar
  183. 183.
    Liu B, Zh YM, Xiong X, Jiang Ch, Huang BY (2000) Preparation of oxidation resistant coatings for Carbon-Carbon composites Aircraft brake pairs. Chin J Nonferrous Met 10(6):864–867Google Scholar
  184. 184.
    Fu QG, Li HJ, Huang JF, Shi XH et al (2005) Anti-Oxidation of phosphate contained coatings for C/C composites. Mater Prot 3:52–54Google Scholar
  185. 185.
    Fitzer E, Manocha LM (1998) Carbon reinforcements and Carbon-Carbon composites. Spirnger –Verlag, HeidelbergCrossRefGoogle Scholar
  186. 186.
    Chen HH, Deng HJ, Li M et al (1998) Advanced composite material. China Substances Press, Beijing (in Chinese)Google Scholar
  187. 187.
    Li HJ (2001) Carbon-Carbon Composites. New Carbon Mater 16(2):79–80 (in Chinese)Google Scholar
  188. 188.
    Zheng G, Jiaxiang Z (1995) Study and devolvement of Carbon/Carbon composites. Aerosp Mater Technol 7(5):25–28Google Scholar
  189. 189.
    Cao JM, Sakai M (1996) The crack-face fiber bridging of a 2D-C/C composite. Carbon 34(3):387–395CrossRefGoogle Scholar
  190. 190.
    Loboiondo NE, Jones LE, Clare AG (1995) Halogenated glass system for the protection of structural Car-bon-Carbon composites. Carbon 33(4):499–508CrossRefGoogle Scholar
  191. 191.
    Li HJ, Zeng XR, Zh LK et al (2001) Research and application of Carbon-Carbon composites in China. Carbon 4:8–13 (in Chinese)Google Scholar
  192. 192.
    Hyeok JJ, Hee DP (1996) Densification of Carbon - Carbon composites by pulse chemical vapor infiltration. Carbon 34(3):417–421CrossRefGoogle Scholar
  193. 193.
    Anada K, Gupta V, Dartford D (1994) Failure mechanisms of laminated Carbon-Carbon composites– II. Under shear loads. Carbon 42(3):797–809Google Scholar
  194. 194.
    Zhao JX (1989) Carbon/Carbon composites in Aerospace department of Dunlop. New Carbon Mater 2:10–17Google Scholar
  195. 195.
    Liu WC, Deng JY (2001) C/C composite market research. Mater Rev 11(2):13–16 (in Chinese)Google Scholar
  196. 196.
    Li HJ, Luo RY, Yang Z (1997) The status and future on research and application about Carbon/Carbon composites in the aeronautical area. J Mater Eng 8:8–10 (in Chinese)Google Scholar
  197. 197.
    Liu YQ, Li RL (2001) Status in carbonaceous brake on civil Aircraft and development of its prefabrication. Civ Aircr Des Res 3:27–30 (in Chinese)Google Scholar
  198. 198.
    Yang S, Wang Y (2001) Development of Aircraft C/C composite brake material. Aeronautical, Science and Technology 1:28–30 (in Chinese)Google Scholar
  199. 199.
    Ji YX, Tian ZX (2000) Research future of carbonaceous brake block on the warcraft in China. Aircr Des 1:49–51 (in Chinese)Google Scholar
  200. 200.
    Song Y, Ren M, Sun JL (2000) The Application of Carbon-Carbon composites in the propulsion system. Technical Textiles 18(16):39–42 (in Chinese)Google Scholar
  201. 201.
    Ren XY, Ma FK (1996) The developing prospect of Carbon/Carbon Composites. Mater Rev 8(2):72–76 (in Chinese)Google Scholar
  202. 202.
    Huo XY, Liu HL, Zeng XM et al (2000) Applications of Carbon fiber composites on SRM. Hi-tech Fiber Appl 25(3):1–7 (in Chinese)Google Scholar
  203. 203.
    Su JM (2001) Development and research of C/C Composites on throat insert material. Carbon Techniq 11(1):6–11 (in Chinese)Google Scholar
  204. 204.
    Yu Q, Chen WJ, Luo Y (1999) About some important aspects in research trend of composite material. Aerosp Mater Technol 12(1):12–15Google Scholar
  205. 205.
    Zuo JL, Zhang HB, Xiong X et al (2003) Evolve of a research of C/C Composites used for nozzle throat. Carbon 2:7–10 (in Chinese)Google Scholar
  206. 206.
    Liu WC (1994) Preparation and application of thermostructural composites. Mater Rev 2:62–66 (in Chinese)Google Scholar
  207. 207.
    Evans SL, Gregson PJ (1998) Composite technology in load-bearing orthopaedic implants. Biomaterials 19(15):1329–1342CrossRefGoogle Scholar
  208. 208.
    Hou XH, Chen Q, Yu CH et al (2000) Biocompatibility and medical application of Carbon -Carbon Composites. J Funct Mater 31(5):460–463 (in Chinese)Google Scholar
  209. 209.
    Pesakova V, Klezl Z, Balik K, Adam M (2000) Biomechanical and biological properties of the implant material carbon-carbon composite covered with pyrolytic carbon. J Mater Sci Mater Med 11(12):793–798CrossRefGoogle Scholar
  210. 210.
    Wang GH, Yu S, Zhu SH, Gao CQ, Liu Y, Miu YL, Huang BY (2009) Biological properties of Carbon/Carbon implant composites with unique manufacturing processes. J Mater Sci: Mater Med 20(2):2487–2492Google Scholar
  211. 211.
    Fu T, He LP, Han Y, Xu KW, Mai YW (2003) Induction of bonelike apatite on Carbon-Carbon composite by sodium silicate. Mater Lett 57(22–23):3500–3503CrossRefGoogle Scholar
  212. 212.
    Zhang LL, Li HJ, Li KZ, Li XT, Zhai YQ, Zhang YL (2008) Effect of surface roughness of Carbon/Carbon composites on osteoblasts growth behaviour. J Inorg Mater 23(2):341–345CrossRefGoogle Scholar
  213. 213.
    Zhai YQ, Li KZ, Li HJ, Wang C, Liu H (2007) Influence of NaF concentration on fluorine-containing hydroxyapatite coating on Carbon/Carbon composites. Mater Chem Phys 106(1):22–26CrossRefGoogle Scholar
  214. 214.
    Lewandoswska-Szumie M, Komender J, Gorecki A, Kowalski M (1997) Fixation of Carbon fibre-reinforced Carbon composite implanted into bone. J Mater Sci Mater Med 8(2):485–488CrossRefGoogle Scholar
  215. 215.
    Adams D, Williams DF (1984) The response of bone to Carbon-Carbon Composites. Biomaterials 5:59–64CrossRefGoogle Scholar
  216. 216.
    Fu H, Maozhang W (1995) Carbon fiber and its composites. Science Press, Beijing, pp 251–257 (in Chinese)Google Scholar
  217. 217.
    Baquey C, Bordenave L, More N (1989) Biocompatibility of Carbon-Carbon materials: Blood tolerability. Biomaterials 10(7):435–440CrossRefGoogle Scholar
  218. 218.
    Jenkins GM, Carvalho FX (1977) Biomedical applications of Carbon fibre reinforced carbon in implanted prostheses. Carbon 15(1):33–37CrossRefGoogle Scholar
  219. 219.
    More N, Baquey C, Barthe X et al (1988) Biocompatibility of Carbon-Carbon materials: in vivo study of their erosion using 14 carbon labelled samples. Biomaterials 9(4):328–334CrossRefGoogle Scholar
  220. 220.
    Zhang LL, Li HJ, Li KZh et al (2008) Effect of surface roughness on the MG 63 cell behavior. J Inorg Mater 23(2):341–345CrossRefGoogle Scholar
  221. 221.
    Gu HQ, Xu GF (1993) Biomedical materials. Science and translation Press, Tianjin, pp 433–447 (in Chinese)Google Scholar
  222. 222.
    Williams KR, Blayney AW (1986) An optical and electron microscopy study of materials implanted in the rat middle ear: I. Carbon. Biomaterials 7(4):283–286CrossRefGoogle Scholar
  223. 223.
    Fizter E, Huüttnr W, Claes L (1980) Torsional strength of Carbon fiber reinforced composites for the application as internal bone plates. Carbon 12(6):383–387Google Scholar
  224. 224.
    Buckley JD (1988) Carbon-Carbon: an overview. Ceram Bull 67(2):1169–1180Google Scholar
  225. 225.
    Sui JL, Li MS, Lu YP (2004) Plasma-sprayed hydroxyapatite coatings on Carbon/Carbon Composites. Surf Coat Technol 176(2):188–192CrossRefGoogle Scholar
  226. 226.
    Walker PL (1990) Carbon: an old but new material revisited. Carbon 28(2–3):261–279CrossRefGoogle Scholar
  227. 227.
    Bokros JC (1977) Carbon Biomedical Devices. Carbon 15(6):355–371CrossRefGoogle Scholar
  228. 228.
    Christel P, Meunier A, Leclercq S et al (1987) Development of a Carbon-Carbon hip prosthesis. J Biomed Mater Res 21(2):191–218Google Scholar
  229. 229.
    Bruckmann H, Keuscher G, Huttinger K (1980) Carbon, a promising material in endoprosthetics, Part 2: tribological properties. Biomaterials 1(2):73–81CrossRefGoogle Scholar
  230. 230.
    Howling GI, Sakoda H, Antonarulrajah A (2003) Biological response to wear debris generated in carbon based composites as potential bearing surfaces for artificial hip joints. J Biomed Mater Res B 67B(2):758–763CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd and Chemical Industry Press, Beijing 2018

Authors and Affiliations

  • Shouyang Zhang
    • 1
  • Yulei Zhang
    • 1
  • Aijun Li
    • 1
  • Qiang Chen
    • 1
  • Xiaohong Shi
    • 1
  • Jianfeng Huang
    • 1
  • Zhibiao Hu
    • 1
  1. 1.Northwestern Polytechnical UniversityXi’anChina

Personalised recommendations