Frontiers of Coupled Cluster Chiroptical Response Theory

Chapter

Abstract

We review the current state and future prospects of coupled cluster response theory for modeling chiroptical properties in both gas-phase and solvated systems. We first provide an overview of ground-state coupled cluster theory and the analytic derivative approach to computing time-independent properties, and then extend this to time-dependent perturbations. Through the well-established “quasi-energy” approach, we demonstrate the connection between the analytic derivative and response approaches, emphasizing the usefulness of the latter for frequency-dependent chiroptical properties. In addition, we review successes of response theory in the prediction of gas-phase specific rotations and electronic circular dichroism spectra for small molecules and the physical requirements of a robust computational model of such properties. We also discuss the many challenges of extending this reliability to solvated systems through several key examples for which theory and experiment diverge significantly.

Keywords

Coupled cluster theory Response theory Chiroptical properties 

Notes

Acknowledgements

This research was supported by a grants CHE-1465149 and ACI-1450169 from the US National Science Foundation. The author acknowledges Advanced Research Computing at Virginia Tech for providing computational resources and technical support that have contributed to the results reported within this paper.

References

  1. 1.
    L.D. Barron, Molecular Light Scattering and Optical Activity, 2nd edn. (Cambridge University Press, Camridge, U.K., 2004)CrossRefGoogle Scholar
  2. 2.
    M. Pecul, K. Ruud, Adv. Quantum Chem. 50, 185 (2005)CrossRefGoogle Scholar
  3. 3.
    T.D. Crawford, Theor. Chem. Acc. 115, 227 (2006)CrossRefGoogle Scholar
  4. 4.
    T.D. Crawford, M.C. Tam, M.L. Abrams, J. Phys. Chem. A 111, 12057 (2007)CrossRefGoogle Scholar
  5. 5.
    T.D. Crawford, in Comprehensive Chiroptical Spectroscopy, vol. 1, ed. by N. Berova, K. Nakanishi, R.W. Woody, P.Polavarapu (Wiley, Hoboken, New Jersey, 2012), chap. 23, pp. 675–697Google Scholar
  6. 6.
    P.L. Polavarapu, Mol. Phys. 91(3), 551 (1997)CrossRefGoogle Scholar
  7. 7.
    J.R. Cheeseman, M.J. Frisch, F.J. Devlin, P.J. Stephens, Chem. Phys. Lett. 252, 211 (1996)CrossRefGoogle Scholar
  8. 8.
    J.R. Cheeseman, M.J. Frisch, F.J. Devlin, P.J. Stephens, J. Phys. Chem. A 104, 1039 (2000)CrossRefGoogle Scholar
  9. 9.
    P.J. Stephens, F.J. Devlin, J.R. Cheeseman, M.J. Frisch, J. Phys. Chem. A 105(22), 5356 (2001)CrossRefGoogle Scholar
  10. 10.
    S. Grimme, Chem. Phys. Lett. 339, 380 (2001)CrossRefGoogle Scholar
  11. 11.
    K. Ruud, P.J. Stephens, F.J. Devlin, P.R. Taylor, J.R. Cheeseman, M.J. Frisch, Chem. Phys. Lett. 373, 606 (2003)CrossRefGoogle Scholar
  12. 12.
    M.C. Tam, N.J. Russ, T.D. Crawford, J. Chem. Phys. 121, 3550 (2004)CrossRefGoogle Scholar
  13. 13.
    C. Diedrich, S. Kausemann, S. Grimme, J. Comp. Meth. Sci. Eng. 4, 1 (2004)Google Scholar
  14. 14.
    T.D. Crawford, L.S. Owens, M.C. Tam, P.R. Schreiner, H. Koch, J. Am. Chem. Soc. 127, 1368 (2005)CrossRefGoogle Scholar
  15. 15.
    T.D. Crawford, P.J. Stephens, J. Phys. Chem. A 112, 1339 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Grimme, S.D. Peyerimhoff, S. Bartram, F. Vögtle, A. Breest, J. Hormes, Chem. Phys. Lett. 213(1–2), 32 (1993)CrossRefGoogle Scholar
  17. 17.
    F. Pulm, J. Schramm, J. Hormes, S. Grimme, S.D. Peyerimhoff, Chem. Phys. 224, 143 (1997)CrossRefGoogle Scholar
  18. 18.
    S. Grimme, Chem. Phys. Lett. 259, 128 (1996)CrossRefGoogle Scholar
  19. 19.
    S. Grimme, J. Harren, A. Sobanski, F. Vögtle, Eur. J. Org. Chem. 1998(8), 1491 (1998)CrossRefGoogle Scholar
  20. 20.
    M. Pecul, K. Ruud, T. Helgaker, Chem. Phys. Lett. 388, 110 (2004)CrossRefGoogle Scholar
  21. 21.
    T.D. Kowalczyk, M.L. Abrams, T.D. Crawford, J. Phys. Chem. A 110, 7649 (2006)CrossRefGoogle Scholar
  22. 22.
    T.D. Crawford, M.C. Tam, M.L. Abrams, Mol. Phys. 105, 2607 (2007)CrossRefGoogle Scholar
  23. 23.
    P.J. Stephens, J. Phys. Chem. 89, 748 (1985)CrossRefGoogle Scholar
  24. 24.
    P.J. Stephens, K.J. Jalkanene, F.J. Devlin, C.F. Chabalowski, J. Phys. Chem. 97, 6107 (1993)CrossRefGoogle Scholar
  25. 25.
    P.J. Stephens, F.J. Devlin, C.S. Ashvar, C.F. Chabalowski, M.J. Frisch, Faraday Discuss. 99, 103 (1994)CrossRefGoogle Scholar
  26. 26.
    K.L. Bak, P. Jørgensen, T. Helgaker, K. Ruud, Faraday Discuss. 99, 121 (1994)CrossRefGoogle Scholar
  27. 27.
    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98(45), 11623 (1994)CrossRefGoogle Scholar
  28. 28.
    P.J. Stephens, F.J. Devlin, Chirality 12, 172 (2000)CrossRefGoogle Scholar
  29. 29.
    T.B. Freedman, X. Cao, R.K. Dukor, L.A. Nafie, Chirality 15, 743 (2003)CrossRefGoogle Scholar
  30. 30.
    T. Helgaker, K. Ruud, K.L. Bak, P. Jørgensen, J. Olsen, Faraday Discuss. 99, 165 (1994)CrossRefGoogle Scholar
  31. 31.
    L.A. Nafie, Ann. Rev. Phys. Chem. 48, 357 (1997)CrossRefGoogle Scholar
  32. 32.
    P. Bouř, Chem. Phys. Lett. 288, 363 (1998)CrossRefGoogle Scholar
  33. 33.
    P. Bouř, J. Comp. Chem. 22(4), 426 (2001)CrossRefGoogle Scholar
  34. 34.
    W. Hug, Chem. Phys. 264, 53 (2001)CrossRefGoogle Scholar
  35. 35.
    W. Hug, G. Zuber, A. de Meijere, A.E. Khlebnikov, H.J. Hansen, Helv. Chim. Acta 84, 1 (2001)CrossRefGoogle Scholar
  36. 36.
    K. Ruud, T. Helgaker, P. Bouř, J. Phys. Chem. A 106, 7448 (2002)CrossRefGoogle Scholar
  37. 37.
    M. Pecul, A. Rizzo, Mol. Phys. 101(13), 2073 (2003)CrossRefGoogle Scholar
  38. 38.
    L.D. Barron, L. Hecht, I.H. McColl, E.W. Blanch, Mol. Phys. 102(8), 731 (2004)CrossRefGoogle Scholar
  39. 39.
    M. Pecul, K. Ruud, Int. J. Quantum Chem. 104(5), 816 (2005)CrossRefGoogle Scholar
  40. 40.
    M. Pecul, E. Larnparska, C. Cappelli, L. Frediani, K. Ruud, J. Phys. Chem. A 110(8), 2807 (2006)CrossRefGoogle Scholar
  41. 41.
    M. Pecul, Chirality 21, E98 (2009)CrossRefGoogle Scholar
  42. 42.
    J.A. Pople, in Energy, Structure, and Reactivity, ed. by D.W. Smith, W.B. McRae (Wiley, New York, 1973), pp. 51–61Google Scholar
  43. 43.
    H.F. Schaefer, J. Mol. Struct. (Theochem) 398, 199 (1997)CrossRefGoogle Scholar
  44. 44.
    R.J. Bartlett, M. Musial, Rev. Mod. Phys. 79, 291 (2007)CrossRefGoogle Scholar
  45. 45.
    I. Shavitt, R.J. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory (Cambridge University Press, Cambridge, 2009)CrossRefGoogle Scholar
  46. 46.
    T.D. Crawford, H.F. Schaefer, in Reviews in Computational Chemistry, vol. 14, ed. by K.B. Lipkowitz, D.B. Boyd (VCH Publishers, New York, 2000), chap. 2, pp. 33–136Google Scholar
  47. 47.
    T. Helgaker, S. Coriani, P. Jørgensen, K. Kristensen, J. Olsen, K. Ruud, Chem. Rev. 112, 543 (2012)CrossRefGoogle Scholar
  48. 48.
    T.J. Lee, G.E. Scuseria, in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, ed. by S.R. Langhoff (Kluwer Academic Publishers, Dordrecht, 1995), pp. 47–108CrossRefGoogle Scholar
  49. 49.
    T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic Structure Theory (Wiley, New York, 2000)Google Scholar
  50. 50.
    T. Helgaker, T.A. Ruden, P. Jørgensen, J. Olsen, W. Klopper, J. Phys. Org. Chem 17(11), 913 (2004)CrossRefGoogle Scholar
  51. 51.
    A. Tajti, P.G. Szalay, A.G. Császár, M. Kállay, J. Gauss, E.F. Valeev, B.A. Flowers, J. Vásquez, J.F. Stanton, J. Chem. Phys. 121(23), 11599 (2004)CrossRefGoogle Scholar
  52. 52.
    H.J. Monkhorst, Int. J. Quantum Chem. Symp. 11, 421 (1977)Google Scholar
  53. 53.
    D. Mukherjee, P.K. Mukherjee, Chem. Phys. 39, 325 (1979)CrossRefGoogle Scholar
  54. 54.
    H. Sekino, R.J. Bartlett, Int. J. Quantum Chem. Symp. 18, 255 (1984)CrossRefGoogle Scholar
  55. 55.
    J. Olsen, P. Jørgensen, J. Chem. Phys. 82(7), 3235 (1985)CrossRefGoogle Scholar
  56. 56.
    H. Koch, P. Jørgensen, J. Chem. Phys. 93(5), 3333 (1990)CrossRefGoogle Scholar
  57. 57.
    O. Christiansen, C. Hättig, J. Gauss, J. Chem. Phys. 109(12), 4745 (1998)CrossRefGoogle Scholar
  58. 58.
    K. Hald, P. Jørgensen, C. Hättig, J. Chem. Phys. 118(3), 1292 (2003)CrossRefGoogle Scholar
  59. 59.
    T.B. Pedersen, H. Koch, J. Chem. Phys. 106(19), 8059 (1997)CrossRefGoogle Scholar
  60. 60.
    O. Christiansen, P. Jørgensen, C. Hättig, Int. J. Quantum Chem. 68, 1 (1998)CrossRefGoogle Scholar
  61. 61.
    T.B. Pedersen, H. Koch, J. Chem. Phys. 108(13), 5194 (1998)CrossRefGoogle Scholar
  62. 62.
    F. Pawlowski, J. Olsen, P. Jørgensen, J. Chem. Phys. 142, 114109 (2015)CrossRefGoogle Scholar
  63. 63.
    S. Coriani, F. Pawlowski, J. Olsen, P. Jørgensen, J. Chem. Phys. 144, 024102 (2016)CrossRefGoogle Scholar
  64. 64.
    R.J. Bartlett, Mol. Phys. 108(21–23), 2905 (2010)CrossRefGoogle Scholar
  65. 65.
    P. Norman, Phys. Chem. Chem. Phys. 13, 20519 (2011)CrossRefGoogle Scholar
  66. 66.
    G.D. Purvis, R.J. Bartlett, J. Chem. Phys. 76, 1910 (1982)CrossRefGoogle Scholar
  67. 67.
    P. Jørgensen, T. Helgaker, J. Chem. Phys. 89(3), 1560 (1988)CrossRefGoogle Scholar
  68. 68.
    P.G. Szalay, M. Nooijen, R.J. Bartlett, J. Chem. Phys. 103(1), 281 (1995)CrossRefGoogle Scholar
  69. 69.
    J. Gauss, J.F. Stanton, J. Chem. Phys. 103(9), 3561 (1995)CrossRefGoogle Scholar
  70. 70.
    P.W. Langhoff, S.T. Epstein, M. Karplus, Rev. Mod. Phys. 44(3), 602 (1972)CrossRefGoogle Scholar
  71. 71.
    J.E. Rice, N.C. Handy, J. Chem. Phys. 94(7), 4959 (1991)CrossRefGoogle Scholar
  72. 72.
    K. Sasagane, F. Aiga, R. Itoh, J. Chem. Phys. 99(5), 3738 (1993)CrossRefGoogle Scholar
  73. 73.
    S. Grimme, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 361, 321 (2002)CrossRefGoogle Scholar
  74. 74.
    T.B. Pedersen, H. Koch, K. Ruud, J. Chem. Phys. 110(6), 2883 (1999)CrossRefGoogle Scholar
  75. 75.
    T.B. Pedersen, H. Koch, L. Boman, A.M.J.S. de Meras, Chem. Phys. Lett. 393(4–6), 319 (2004)CrossRefGoogle Scholar
  76. 76.
    A. de Meijere, A.F. Khlebnikov, R.R. Kostikov, S.I. Kozhushkov, P.R. Schreiner, A. Wittkopp, D.S. Yufit, Angew. Chem. Int. Ed. 38(23), 3474 (1999)CrossRefGoogle Scholar
  77. 77.
    T.Müller, K.B. Wiberg, P.H. Vaccaro, J. Phys. Chem. A 104, 5959 (2000), https://doi.org/10.1021/jp000705n
  78. 78.
    S.M. Wilson, K.B. Wiberg, J.R. Cheeseman, M.J. Frisch, P.H. Vaccaro, J. Phys. Chem. A 109(51), 11752 (2005), https://doi.org/10.1021/jp054283z
  79. 79.
    M.C. Tam, T.D. Crawford, J. Phys. Chem. A 110, 2290 (2006), https://doi.org/10.1021/jp056093u
  80. 80.
    M.C. Tam, M.L. Abrams, T.D. Crawford, J. Phys. Chem. A 111(44), 11232 (2007)CrossRefGoogle Scholar
  81. 81.
    K.B. Wiberg, Y. Wang, S.M. Wilson, P.H. Vaccaro, W.L. Jorgensen, T.D. Crawford, M.L. Abrams, J.R. Cheeseman, M. Luderer, J. Phys. Chem. A 112, 2415 (2008)CrossRefGoogle Scholar
  82. 82.
    T.B. Pedersen, J. Kongsted, T.D. Crawford, Chirality 21, S68 (2009)CrossRefGoogle Scholar
  83. 83.
    T.B. Pedersen, J. Kongsted, T.D. Crawford, K. Ruud, J. Chem. Phys. 130, 034310 (2009)CrossRefGoogle Scholar
  84. 84.
    T.J. Mach, T.D. Crawford, J. Phys. Chem. A 115, 10045 (2011)CrossRefGoogle Scholar
  85. 85.
    K. Ruud, P.R. Taylor, P.O. Åstrand, Chem. Phys. Lett. 337, 217 (2001)CrossRefGoogle Scholar
  86. 86.
    J. Kongsted, T.B. Pedersen, M. Strange, A. Osted, A.E. Hansen, K.V. Mikkelsen, F. Pawlowski, P. Jørgensen, C. Hättig, Chem. Phys. Lett. 401, 385 (2005)CrossRefGoogle Scholar
  87. 87.
    B.C. Mort, J. Autschbach, J. Phys. Chem. A 109(38), 8617 (2005)CrossRefGoogle Scholar
  88. 88.
    K. Ruud, R. Zanasi, Angew. Chem. Int. Ed. Engl. 44(23), 3594 (2005)CrossRefGoogle Scholar
  89. 89.
    J. Neugebauer, E.J. Baerends, M. Nooijen, J. Autschbach, J. Chem. Phys. 122, 234305 (2005)CrossRefGoogle Scholar
  90. 90.
    J. Kongsted, T.B. Pedersen, L. Jensen, A.E. Hansen, K.V. Mikkelsen, J. Am. Chem. Soc. 128(3), 976 (2006)CrossRefGoogle Scholar
  91. 91.
    B.C. Mort, J. Autschbach, J. Phys. Chem. A 110, 11381 (2006)CrossRefGoogle Scholar
  92. 92.
    J. Kongsted, K. Ruud, Chem. Phys. Lett. 451, 226 (2008)CrossRefGoogle Scholar
  93. 93.
    T.D. Crawford, W.D. Allen, Mol. Phys. 107, 1041 (2009)CrossRefGoogle Scholar
  94. 94.
    K.B. Wiberg, P.H. Vaccaro, J.R. Cheeseman, J. Am. Chem. Soc. 125, 1888 (2003), https://doi.org/10.1021/ja0211914
  95. 95.
    K.B. Wiberg, Y.G. Wang, P.H. Vaccaro, J.R. Cheeseman, M.R. Luderer, J. Phys. Chem. A 109(15), 3405 (2005), https://doi.org/10.1021/jp040724n
  96. 96.
    J.M. Lambert, R.N. Compton, T.D. Crawford, J. Chem. Phys. 136, 114512 (2012)CrossRefGoogle Scholar
  97. 97.
    N. Berova, K. Nakanishi, R.W. Woody (eds.), Circular Dichroism: Principles and Applications, 2nd edn. (Wiley, New York, 2000)Google Scholar
  98. 98.
    Y. Kumata, J. Furukawa, T. Fueno, Bull. Chem. Soc. Japan 43(12), 3920 (1970)CrossRefGoogle Scholar
  99. 99.
    J. Tomasi, M. Persico, Chem. Rev. 94, 2027 (1994)CrossRefGoogle Scholar
  100. 100.
    J. Gao, Acc. Chem. Res. 29, 298 (1996)CrossRefGoogle Scholar
  101. 101.
    C.J. Cramer, D.G. Truhlar, Chem. Rev. 99, 2161 (1999)CrossRefGoogle Scholar
  102. 102.
    J. Tomasi, R. Cammi, B. Mennucci, C. Cappelli, S. Corni, Phys. Chem. Chem. Phys. 4, 5697 (2002)CrossRefGoogle Scholar
  103. 103.
    B. Mennucci, J. Tomasi, R. Cammi, J.R. Cheeseman, M.J. Frisch, F.J. Devlin, S. Gabriel, P.J. Stephens, J. Phys. Chem. A 106(25), 6102 (2002)CrossRefGoogle Scholar
  104. 104.
    M. Pecul, D. Marchesan, K. Ruud, S. Coriani, J. Chem. Phys. 122(2), 024106 (2005)CrossRefGoogle Scholar
  105. 105.
    H. Koch, O. Christiansen, P. Jørgensen, A.M.S. de Merás, T. Helgaker, J. Chem. Phys. 106(5), 1808 (1997)CrossRefGoogle Scholar
  106. 106.
    O. Christiansen, H. Koch, P. Jørgensen, J. Chem. Phys. 103(17), 7429 (1995)CrossRefGoogle Scholar
  107. 107.
    P. Mukhopadhyay, G. Zuber, M.R. Goldsmith, P. Wipf, D.N. Beratan, Chem. Phys. Chem. 7(12), 2483 (2006)CrossRefGoogle Scholar
  108. 108.
    P. Mukhopadhyay, G. Zuber, P. Wipf, D.N. Beratan, Angew. Chem. Int. Ed. 46(34), 6450 (2007)CrossRefGoogle Scholar
  109. 109.
    F. Lipparini, F. Egidi, C. Cappelli, V. Barone, J. Chem. Theory Comp. 9(4), 1880 (2013)CrossRefGoogle Scholar
  110. 110.
    M. Caricato, P.H. Vaccaro, T.D. Crawford, K.B. Wiberg, P. Lahiri, J. Phys. Chem. A 118, 4863 (2014)CrossRefGoogle Scholar
  111. 111.
    B. Moore, M. Srebro, J. Autschbach, J. Chem. Theory Comp. 8, 4336 (2012)CrossRefGoogle Scholar
  112. 112.
    D.A. Lightner, J.K. Gawroński, T.D. Bouman, J. Am. Chem. Soc. 102, 5749 (1980)CrossRefGoogle Scholar
  113. 113.
    P. Lahiri, K.B. Wiberg, P.H. Vaccaro, M. Caricato, T.D. Crawford, Angew. Chem. Int. Ed. Engl. 53, 1386 (2014)CrossRefGoogle Scholar
  114. 114.
    T.D. Crawford, A. Kumar, K. Hannon, T.J. Mach, H.R. McAlexander, S. Höfener, L. Visscher, J. Chem. Theory Comp. 11, 5305 (2015)CrossRefGoogle Scholar
  115. 115.
    N. Govind, Y.A. Wang, A.J.R. da Silva, E.A. Carter, Chem. Phys. Lett. 295, 129 (1998)CrossRefGoogle Scholar
  116. 116.
    J.M. Turney, A.C. Simmonett, R.M. Parrish, E.G. Hohenstein, F. Evangelista, J.T. Fermann, B.J. Mintz, L.A. Burns, J.J. Wilke, M.L. Abrams, N.J. Russ, M.L. Leininger, C.L. Janssen, E.T. Seidl, W.D. Allen, H.F. Schaefer, R.A. King, E.F. Valeev, C.D. Sherrill, T.D. Crawford, Wiley Interdisciplinary Reviews: Computational Molecular Science 2, 556 (2012)Google Scholar
  117. 117.
    Amsterdam Density Functional program, Theoretical Chemistry, Vrije Universiteit, Amsterdam, http://www.scm.com
  118. 118.
    G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C.F. Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler, J. Comp. Chem. 22(9), 931 (2001)CrossRefGoogle Scholar
  119. 119.
    J. Neugebauer, J. Chem. Phys. 131, 084104 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemistry Virginia TechBlacksburgUSA

Personalised recommendations