Advertisement

Nuclear Quantum Effect and H/D Isotope Effect on Hydrogen-Bonded Systems with Path Integral Simulation

  • Kimichi Suzuki
  • Yukio Kawashima
  • Masanori Tachikawa
Chapter

Abstract

In the past two decades, ab initio path integral (PI) simulation, in particular, ab initio path integral molecular dynamics simulation has reached its maturity and has been widely used to take account of nuclear quantum effects, such as zero-point vibrational energy and tunneling, in complex many-body systems. In particular, this method has significantly contributed to provide important insights into structures and fluctuation of the hydrogen-bonded systems as well as their isotopomers at finite temperature. In this chapter, we will review the recent advances in ab initio PI simulation. The development of an efficient algorithm for ab initio PI simulation and some applications will be featured. The efficient algorithm for path integral hybrid Monte Carlo method based on the second- and fourth-order Trotter expansion, which realizes large reduction of computational effort without loss of accuracy, will be described in detail. The applications focusing on the hydrogen-bonded systems, protonated and deprotonated water dimers (H5O2 + and H3O2 ), F(H2O)n (n = 1–3) clusters, and hydrogen maleate anion demonstrate the ability and powerfulness of PI simulation.

Keywords

Ab initio path integral simulation Nuclear quantum effect Hydrogen-bonded structure Geometrical isotope effect 

Notes

Acknowledgements

This work is partly supported by Grants-in-Aid for Scientific Research (KAKENHI) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Grant Numbers of 16K05676 (YK), 15KT0067, and 16H00780 (MT). Theoretical calculations were partly performed at the Research Center for Computational Science, Institute for Molecular Science, Japan, and the K computer and other computers provided by the RIKEN Advanced Institute for Computational Science through the HPCI System Research project.

References

  1. 1.
    R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948)CrossRefGoogle Scholar
  2. 2.
    L.D. Fosdick, J. Math. Phys. 3, 1251 (1962)CrossRefGoogle Scholar
  3. 3.
    L.D. Fosdick, H.F. Jordan, Phys. Rev. 143, 58 (1966)CrossRefGoogle Scholar
  4. 4.
    H.F. Jordan, L.D. Fosdick, Phy. Rev. 171, 128 (1968)CrossRefGoogle Scholar
  5. 5.
    C. Chakravarty, Int. Rev. Phys. Chem. 16, 421 (1997)CrossRefGoogle Scholar
  6. 6.
    D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)CrossRefGoogle Scholar
  7. 7.
    M. Sprik, M.L. Klein, D. Chandler, Phys. Rev. B 31, 4234 (1985)CrossRefGoogle Scholar
  8. 8.
    R.A. Friesner, R.M. Levy, J. Chem. Phys. 80, 4488 (1984)CrossRefGoogle Scholar
  9. 9.
    D. Chandler, P. Wolynes, J. Chem. Phys. 74, 4078 (1981)CrossRefGoogle Scholar
  10. 10.
    H.D. Raedt, B.D. Raedt, Phys. Rev. A 28, 3576 (1983)CrossRefGoogle Scholar
  11. 11.
    M. Takahashi, M. Imada, J. Phys. Soc. Jpn. 53, 964 (1984)Google Scholar
  12. 12.
    M. Takahashi, M. Imada, J. Phys. Soc. Jpn. 11, 3675 (1984)Google Scholar
  13. 13.
    M. Suzuki, Comm. Math. Phys. 51, 183 (1976)CrossRefGoogle Scholar
  14. 14.
    X.-P. Li, J.Q. Broughton, J. Chem. Phys. 86, 5094 (1987)CrossRefGoogle Scholar
  15. 15.
    B.J. Berne, D. Thirumalai, Ann. Rev. Phys. Chem. 37, 401 (1986)CrossRefGoogle Scholar
  16. 16.
    M.J. Gillan, in Computer Modelling of Fluids Polyers and Solids, ed. by C.R.A. Catlow, S.C. Parker, M.P. Allen (Kluwer, Dordrecht, The Netherlands, 1990), p. 155CrossRefGoogle Scholar
  17. 17.
    M. Parrinello, A. Rahman, J. Chem. Phys. 80, 860 (1984)CrossRefGoogle Scholar
  18. 18.
    R.W. Hall, B.J. Berne, J. Chem. Phys. 81, 3641 (1984)CrossRefGoogle Scholar
  19. 19.
    M.E. Tuckerman, B.J. Berne, G.J. Martyna, M.L. Klein, J. Chem. Phys. 99, 2796 (1993)CrossRefGoogle Scholar
  20. 20.
    D. Marx, M. Parrinello, Z. Phys. B, 95, 143 (1994)Google Scholar
  21. 21.
    D. Marx, M. Parrinello, Nature 375, 216 (1995)CrossRefGoogle Scholar
  22. 22.
    D. Marx, M. Parrinello, Science, 271, 179 (1996)Google Scholar
  23. 23.
    M.E. Tuckerman, D. Marx, M.L. Klein, M. Parrinello, Science 275, 817 (1997)CrossRefGoogle Scholar
  24. 24.
    D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinelo, Nature 397, 601 (1999)CrossRefGoogle Scholar
  25. 25.
    T. Miyake, T. Ogitsu, S. Tsuneyuki, Phys. Rev. Lett. 81, 1873 (1998)CrossRefGoogle Scholar
  26. 26.
    H. Kitamura, S. Tsuneyuki, T. Ogitsu, T. Miyake, Nature 404, 259 (2000)CrossRefGoogle Scholar
  27. 27.
    D. Marx, M. Parrinello, J. Chem. Phys. 104, 4077 (1996)CrossRefGoogle Scholar
  28. 28.
    M.E. Tuckerman, D. Marx, M.L. Klein, M. Parrinello, J. Chem. Phys. 104, 5579 (1996)CrossRefGoogle Scholar
  29. 29.
    D. Marx, J. Hutter, Cambridge Univ. Press, Ab initio Molecular Mechanics: Basic Theory and Advanced Methods (2009)Google Scholar
  30. 30.
    B.J. Johnson, P.M.W. Gill, J.A. Pople, J. Chem. Phys. 98, 5612 (1993)CrossRefGoogle Scholar
  31. 31.
    J. Florián, B.J. Johnson, J. Phys. Chem. 99, 5899 (1995)CrossRefGoogle Scholar
  32. 32.
    M. Shiga, M. Tachikawa, S. Miura, J. Chem. Phys. 115, 9149 (2001)CrossRefGoogle Scholar
  33. 33.
    M. Shiga, K. Suzuki, M. Tachikawa, J. Chem. Phys. 132, 114104 (2010)CrossRefGoogle Scholar
  34. 34.
    A. Kaczmarek, M. Shiga, D. Marx, J. Phys. Chem. A 113, 1985 (2009)CrossRefGoogle Scholar
  35. 35.
    E.G. Diken, J.H. Headrick, J.R. Roscioli, J.C. Bopp, M.A. Johnson, J. Phys. Chem. A 109, 1487 (2005)CrossRefGoogle Scholar
  36. 36.
    J.M. Price, M.W. Crofton, Y.T. Lee, J. Phys. Chem. 95, 2182 (1991)CrossRefGoogle Scholar
  37. 37.
    H.M.E. Cardwell, J.D. Dunitz, L.E. Orgel, J. Chem. Soc., 3740 (1953)Google Scholar
  38. 38.
    C.L. Perrin, Pure Appl. Chem. 81, 571 (2009)CrossRefGoogle Scholar
  39. 39.
    M. Tachikawa, M. Shiga, J. Am. Chem. Soc. 127, 11908 (2005)CrossRefGoogle Scholar
  40. 40.
    K. Suzuki, M. Shiga, M. Tachikawa, J. Chem. Phys. 129, 144310 (2008)CrossRefGoogle Scholar
  41. 41.
    J.A. Platts, K.E. Laidig, J. Phys. Chem. 99, 6487 (1995)CrossRefGoogle Scholar
  42. 42.
    T. Asada, H. Haraguchi, K. Kitaura, J. Phys. Chem. A 105, 7423 (2001)CrossRefGoogle Scholar
  43. 43.
    H. Ishibashi, A. Hayashi, M. Shiga, M. Tachikawa, Chem. Phys. Chem. 9, 383 (2008)CrossRefGoogle Scholar
  44. 44.
    P. George, C.W. Bock, M. Trachtman, J. Phys. Chem. 87, 1839 (1983)CrossRefGoogle Scholar
  45. 45.
    C.C. Wilson, L.H. Thormas, C.A. Morrison, Chem. Phys. Lett. 381, 102 (2003)CrossRefGoogle Scholar
  46. 46.
    Y. Kawashima, M. Tachikawa, Chem. Phys. Lett. 571, 23 (2013)CrossRefGoogle Scholar
  47. 47.
    Y. Ogata, M. Daido, Y. Kawashima, M. Tachikawa, RSC Adv. 3, 25252 (2013)CrossRefGoogle Scholar
  48. 48.
    Y. Kawashima, K. Suzuki, M. Tachikawa, J. Phys. Chem. A 117, 5205 (2013)CrossRefGoogle Scholar
  49. 49.
    Y. Kawashima, M. Tachikawa, J. Chem. Theor. Comput. 10, 153 (2014)CrossRefGoogle Scholar
  50. 50.
    G.A. Jeffrey, An Introduction to Hydrogen Bonding (Oxford University Press, New York, 1997)Google Scholar
  51. 51.
    A. Kohen, H.H. Limbach (eds.), Isotope Effects in Chemistry and Biology (CRC Press, Boca Raton, 2005)Google Scholar
  52. 52.
    T. Steiner, Angew. Chem. Int. Ed. 41, 48 (2002)CrossRefGoogle Scholar
  53. 53.
    W.H. Robertson, M.A. Johnson, Annu. Rev. Phys. Chem. 54, 173 (2003)CrossRefGoogle Scholar
  54. 54.
    M. Kabeláč, P. Hobza, Chem. Eur. J. 7, 2067 (2001)CrossRefGoogle Scholar
  55. 55.
    J.A. Gerlt, P.G. Gassman, Biochemistry 32, 11943 (1993)CrossRefGoogle Scholar
  56. 56.
    W.W. Cleland, M.M. Kreevoy, Science 264, 1887 (1994)CrossRefGoogle Scholar
  57. 57.
    P.A. Frey, S.A. Whitt, J.B. Tobin, Science 264, 1927 (1994)CrossRefGoogle Scholar
  58. 58.
    S. Yamaguchi, H. Kamikubo, K. Kurihara, R. Kuroki, N. Niimura, N. Shimizu, Y. Yamazaki, M. Kataoka, Proc. Natl. Acad. Sci. U.S.A. 106, 440 (2009)CrossRefGoogle Scholar
  59. 59.
    S.O. Shan, S. Loh, D. Herschlag, Science 272, 97 (1996)CrossRefGoogle Scholar
  60. 60.
    D.B. Northrop, Acc. Chem. Res. 34, 790 (2001)CrossRefGoogle Scholar
  61. 61.
    T. Ishida, Biochemistry 45, 5413 (2006)CrossRefGoogle Scholar
  62. 62.
    S. Scheiner, T. Kar, J. Am. Chem. Soc. 117, 6970 (1995)CrossRefGoogle Scholar
  63. 63.
    J.P. Guthrie, Chem. Biol. 3, 163 (1996)CrossRefGoogle Scholar
  64. 64.
    A. Warshel, A. Papazyan, Proc. Natl. Acad. Sci. U.S.A. 93, 13665 (1996)CrossRefGoogle Scholar
  65. 65.
    K. Saito, H. Ishikita, Biochemistry 51, 1171 (2012)CrossRefGoogle Scholar
  66. 66.
    M.E. Tuckerman, D. Marx, Phys. Rev. Lett. 86, 4946 (2001)CrossRefGoogle Scholar
  67. 67.
    A. Nakayama, T. Taketsugu, M. Shiga, Chem. Lett. 38, 976 (2009)CrossRefGoogle Scholar
  68. 68.
    K. Suzuki, M. Tachikawa, M. Shiga, J. Chem. Phys. 132, 144108 (2010)CrossRefGoogle Scholar
  69. 69.
    K. Suzuki, M. Tachikawa, M. Shiga, J. Chem. Phys. 138, 184307 (2013)CrossRefGoogle Scholar
  70. 70.
    S.A. Chin, Phys. Rev. E 69, 046118 (2004)CrossRefGoogle Scholar
  71. 71.
    J.M. Headrick, J.C. Bopp, M.A. Johnson, J. Chem. Phys. 121, 11523 (2004)CrossRefGoogle Scholar
  72. 72.
    N.I. Hammer, E.G. Diken, J.R. Roscioli, M.A. Johnson, E.M. Myshakin, K.D. Jordan, A.B. McCoy, X. Huang, J.M. Bowman, S. Carter, J. Chem. Phys. 122, 224301 (2005)CrossRefGoogle Scholar
  73. 73.
    L.R. McCunn, J.R. Roscioli, M.A. Johnson, A.B. McCoy, J. Phys. Chem. B 112, 321 (2008)CrossRefGoogle Scholar
  74. 74.
    D.J. Wales, J. Chem. Phys. 110, 10403 (1999)CrossRefGoogle Scholar
  75. 75.
    M.E. Tuckerman, D. Marx, M.L. Klein, M. Parrinello, Nature 417, 925 (2002)CrossRefGoogle Scholar
  76. 76.
    M. Meot-Ner, Chem. Rev. 105, 213 (2005)CrossRefGoogle Scholar
  77. 77.
    X. Huang, B, J. Braams, J. M. Bowman. J. Chem. Phys. 122, 044308 (2005)CrossRefGoogle Scholar
  78. 78.
    A.B. McCoy, X. Huang, S. Carter, M.Y. Landeweer, J.M. Bowman, J. Chem. Phys. 122, 061101 (2005)CrossRefGoogle Scholar
  79. 79.
    D. Marx, Chem. Phys. Chem. 7, 1848 (2006)CrossRefGoogle Scholar
  80. 80.
    O. Vendrell, F. Gatti, D. Lauvergnat, H.-D. Meyer, J. Chem. Phys. 127, 184302 (2007)CrossRefGoogle Scholar
  81. 81.
    O. Vendrell, F. Gatti, H.-D. Meyer, J. Chem. Phys. 127, 184303 (2007)CrossRefGoogle Scholar
  82. 82.
    O. Vendrell, F. Gatti, H.-D. Meyer, Angew. Chem. Int. Ed. 46, 6918 (2007)CrossRefGoogle Scholar
  83. 83.
    Y. Yang, O. Kühn, Z. Phys, Chem. 222, 1375 (2008)Google Scholar
  84. 84.
    O. Vendrell, M. Brill, F. Gatti, D. Lauvergnat, H.-D. Meyer, J. Chem. Phys. 130, 234305 (2009)CrossRefGoogle Scholar
  85. 85.
    O. Vendrell, F. Gatti, H.-D. Meyer, J. Chem. Phys. 131, 034308 (2009)CrossRefGoogle Scholar
  86. 86.
    M. Kaledin, A.L. Kaledin, J.M. Bowman, J. Ding, J.M. Bowman, J. Phys. Chem. A 113, 7671 (2009)CrossRefGoogle Scholar
  87. 87.
    D. Marx, A. Chandra, M.E. Tuckerman, Chem. Rev. 110, 2174 (2010)CrossRefGoogle Scholar
  88. 88.
    X.-Z. Li, B. Walker, A. Michaelides, Proc. Natl. Acad. Sci. U.S.A. 108, 6369 (2011)CrossRefGoogle Scholar
  89. 89.
    T.L. Guasco, M.A. Johnson, A.B. McCoy, J. Phys. Chem. A 115, 5847 (2011)CrossRefGoogle Scholar
  90. 90.
    T. Ishimoto, M. Koyama, Chem. Phys. 392, 166 (2012)CrossRefGoogle Scholar
  91. 91.
    N. Agmon, Chem. Phys. Lett. 319, 247 (2000)CrossRefGoogle Scholar
  92. 92.
    L. Turi, W.S. Sheu, P. Rossky, Science 309, 914 (2005)CrossRefGoogle Scholar
  93. 93.
    M. Tuckerman, K. Laasonen, M. Spirk, M. Parrinello, J. Chem. Phys. 103, 150 (1995)CrossRefGoogle Scholar
  94. 94.
    J. Lobaugh, G.A. Voth, J. Chem. Phys. 104, 2056 (1996)CrossRefGoogle Scholar
  95. 95.
    H. Lapid, N. Agmon, M.K. Petersen, G.A. Voth, J. Chem. Phys. 122, 014506 (2005)CrossRefGoogle Scholar
  96. 96.
    W.H. Robertson, E.G. Diken, E.A. Price, J.W. Shin, M.A. Johnson, Science 299, 1367 (2003)CrossRefGoogle Scholar
  97. 97.
    E.A. Price, W.H. Robertson, E.G. Diken, G.H. Weddle, M.A. Johnson, Chem. Phys. Lett. 366, 412 (2002)CrossRefGoogle Scholar
  98. 98.
    C.C.M. Samson, W. Klopper, J. Mol. Struct. (THEOCHEM) 586, 201 (2002)CrossRefGoogle Scholar
  99. 99.
    A.B. McCoy, X. Huang, S. Carter, J.M. Bowman, J. Chem. Phys. 123, 064317 (2005)CrossRefGoogle Scholar
  100. 100.
    X. Huang, B.J. Braams, S. Carter, J.M. Bowman, J. Am. Chem. Soc. 126, 5042 (2004)CrossRefGoogle Scholar
  101. 101.
    W.H. Robertson, M.A. Johnson, Ann. Rev. Phys. Chem. 54, 173 (2003)CrossRefGoogle Scholar
  102. 102.
    W.H. Robertson, E.G. Diken, E.A. Price, J.-W. Shin, M.A. Johnson, Science 299, 1367 (2003)CrossRefGoogle Scholar
  103. 103.
    S.S. Xantheas, T.H. Dunning, J. Phys. Chem. 98, 13489 (1994)CrossRefGoogle Scholar
  104. 104.
    J. Kim, H.M. Lee, S.B. Suh, D. Majumdar, K.S. Kim, J. Chem. Phys. 113, 5259 (2000)CrossRefGoogle Scholar
  105. 105.
    G.M. Chaban, S.S. Xantheas, R.B. Gerber, J. Phys. Chem. A 107, 4952 (2003)CrossRefGoogle Scholar
  106. 106.
    S. Horvath, A.B. McCoy, J.R. Roscioli, M.A. Johnson, J. Phys. Chem. A 112, 12337 (2008)CrossRefGoogle Scholar
  107. 107.
    S.S. Xantheas, L. Dang, J. Phys. Chem. 100, 3989 (1996)CrossRefGoogle Scholar
  108. 108.
    S.S. Xantheas, J. Chem. Phys. 104, 8821 (1996)CrossRefGoogle Scholar
  109. 109.
    P. Weis, P.R. Kemper, T.M. Bowers, S.S. Xantheas, J. Am. Chem. Soc. 121, 3531 (1999)CrossRefGoogle Scholar
  110. 110.
    S.S. Xantheas, J. Phys. Chem. 100, 9703 (1996)CrossRefGoogle Scholar
  111. 111.
    O.M. Cabarcos, C.J. Weinheimer, J.M. Lisy, S.S. Xantheas, J. Chem. Phys. 110, 5 (1999)CrossRefGoogle Scholar
  112. 112.
    S.W. Peterson, H.A. Levy, J. Chem. Phys. 29, 948 (1958)CrossRefGoogle Scholar
  113. 113.
    S. Darlow, W. Cochran, Acta Crystallogr. 14, 1250 (1961)CrossRefGoogle Scholar
  114. 114.
    K. Nakamoto, Y.A. Sarma, G.T. Behnke, J. Chem. Phys. 42, 1662 (1965)CrossRefGoogle Scholar
  115. 115.
    H.R. Zelsmann, Z. Mielke, M.M. Ilczyszyn, Spectrochim. Acta 44A, 705 (1988)CrossRefGoogle Scholar
  116. 116.
    M.M. Ilczynszyn, J. Baran, H. Ratajczak, A.J. Barnes, J. Mol. Struct. 270, 499 (1992)CrossRefGoogle Scholar
  117. 117.
    J. Tomkinson, I.J. Braid, J. Howard, T.C. Waddington, Chem. Phys. 64, 151 (1982)CrossRefGoogle Scholar
  118. 118.
    J. Howard, J. Tomkinson, J. Eckert, J.A. Goldstone, A.D. Taylor, J. Chem. Phys. 78, 3150 (1983)CrossRefGoogle Scholar
  119. 119.
    F. Fillaux, N. Leygue, J. Tomkinson, A. Cousson, W. Paulus, Chem. Phys. 120, 387 (1999)CrossRefGoogle Scholar
  120. 120.
    S. Forsen, J. Chem. Phys. 31, 852 (1959)CrossRefGoogle Scholar
  121. 121.
    A. Wong, K.J. Pike, R. Jenkins, G.J. Clarkson, T. Anupõld, A.P. Howes, D.H.G. Crout, A. Samoson, R. Dupree, M.E. Smith, J. Phys. Chem. A 110, 1824 (2006)CrossRefGoogle Scholar
  122. 122.
    M. Fukai, T. Matsuo, H. Suga, J. Chem. Thermodyn. 20, 1337 (1988)CrossRefGoogle Scholar
  123. 123.
    G. Olovsson, I. Olovsson, M.S. Lehmann, Acta Crystallogr. C 40, 1521 (1984)CrossRefGoogle Scholar
  124. 124.
    C.L. Perrin, Science 266, 1665 (1994)CrossRefGoogle Scholar
  125. 125.
    G.E. Hall, J. Am. Chem. Soc. 100, 8264–8266 (1978)CrossRefGoogle Scholar
  126. 126.
    P. Schah-Mohammedi, I.G. Shenderovich, C. Deterring, H.-H. Limbach, P.M. Tolstoy, S.N. Smirnov, G.S. Denisov, N.S. Golubev, J. Am. Chem. Soc. 122, 12878–12879 (2000)CrossRefGoogle Scholar
  127. 127.
    Z. Latajka, H. Ratajczak, Chem. Phys. Lett. 49, 407 (1977)CrossRefGoogle Scholar
  128. 128.
    P. George, C.W. Bock, M. Trachtman, J. Phys. Chem. 87, 1839 (1983)CrossRefGoogle Scholar
  129. 129.
    M. Hodoscek, D. Hadzi, J. Mol. Struct. (Theochem) 209, 411 (1990)CrossRefGoogle Scholar
  130. 130.
    M.A. Rios, J. Rodriguez, Can. J. Chem. 71, 303 (1993)CrossRefGoogle Scholar
  131. 131.
    M. Garcia-Viloca, A. Gonzalez-Lafont, J.M. Lluch, J. Am. Chem. Soc. 119, 1081 (1997)CrossRefGoogle Scholar
  132. 132.
    M. Garcia-Viloca, A. Gonzalez-Lafont, J.M. Lluch, J. Am. Chem. Soc. 121, 9198 (1999)CrossRefGoogle Scholar
  133. 133.
    R.D. Bach, O. Dmitrenko, M.N. Glukhovtsev, J. Am. Chem. Soc. 123, 7134 (2001)CrossRefGoogle Scholar
  134. 134.
    H.-K. Woo, X.-B. Wang, L.-S. Wang, K.-C. Lau, J. Phys. Chem. A 109, 10633 (2005)CrossRefGoogle Scholar
  135. 135.
    S.X. Tian, H.-B. Li, J. Phys. Chem. A 111, 4404 (2007)CrossRefGoogle Scholar
  136. 136.
    F. Avbelj, M. Hodoscek, D. Hadzi, Spectrochim. Acta 41A, 89 (1985)CrossRefGoogle Scholar
  137. 137.
    H. Ratajczak, A. Barnes, J. Baran, A. Yaremko, Z. Latajka, P. Dopieralski, J. Mol. Struct. (Theochem) 887, 9 (2008)CrossRefGoogle Scholar
  138. 138.
    M.V. Vener, A.V. Manaev, V.G. Tsirelson, J. Phys. Chem. A 112, 13628 (2008)CrossRefGoogle Scholar
  139. 139.
    C.C. Wilson, L.H. Thomas, C.A. Morrison, Chem. Phys. Lett. 381, 102 (2003)CrossRefGoogle Scholar
  140. 140.
    C.C. Wilson, L.H. Thomas, C.A. Morrison, Chem. Phys. Lett. 399, 292 (2004)CrossRefGoogle Scholar
  141. 141.
    P. Dopieralski, C.L. Perrin, Z. Latajka, J. Chem. Theory Comput. 7, 3505 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kimichi Suzuki
    • 1
  • Yukio Kawashima
    • 2
  • Masanori Tachikawa
    • 1
  1. 1.Quantum Chemistry Division, Graduate School of ScienceYokohama City UniversityYokohamaJapan
  2. 2.RIKEN Advanced Institute for Computational ScienceKobeJapan

Personalised recommendations