Abstract
In this chapter, we review some recent developments in our XP-PCM method to introduce the effect of high pressure (\(\text {p} >1\) GPa) in the quantum chemistry study of molecular properties and processes. After a presentation of the physical basis and the computational aspects of the XP-PCM model, we give examples of its recent applications. These applications regard the study and analysis of the electron distribution, of the equilibrium geometry, and of the vibrational frequencies of molecular systems under high pressure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
The factor 1 / 2 in front to the operator \(\hat{V}_{e}({|\varPsi >})\) is due to the nonlinear nature of this operator, and \({\tilde{V}}_{nn}\) is the nuclei–nuclei interaction contribution in the presence of the external medium.
- 3.
Formally, the Pauli repulsion operator for N electrons of Eq. (12.2) may be written as \(\hat{V}_{r}=\hat{v}_r(\mathbf r)\) with \(\hat{v}_r(\mathbf r)=\delta (\mathbf {r}-\mathbf {r'}_i)V_0 \varTheta (\mathbf {r})\).
- 4.
An uncoupled molecular orbital (MO) perturbation scheme is a perturbation method that evaluates the effect of the perturbation on the molecular orbital by neglecting the effects that the perturbation has on the electron–electron repulsion contribution of the Fock operator.
- 5.
For reasons of space, we can no further discuss this connection between our XP-PCM theory with the Bell theory and its extensions.
References
A. Michels, J. De Boers, A. Bijl, Physica 4, 981 (1937); A. Sommerfeld, H. Welker, Ann. Phys. 32, 56 (1938); C.A. ten Seldam, S.R. de Groot, Physica 18, 891 (1952); E.V. Ludeña, J. Chem. Phys. 69, 1770 (1978); R. LeSar, D.R. Herschbach, J. Phys. Chem. 85, 2798 (1981); R. LeSar, D.R. Herschbach, J. Phys. Chem. 87, 5202 (1983); J. Gorecki, W. Byers Brown, J. Chem. Phys. 89, 2138 (1988); J.P. Connerade, R. Smaoune, J. Phys. B 33, 3467 (2000); K.D. Sen, B. Mayer, P.C. Schmidt, J. Garza, R. Vragas, A. Vela, Int. J. Quantum Chem. 90, 491 (2002); S.A. Cruz, J. Soullard, Chem. Phys. Lett. 391, 138 (2004); R.F.W. Bader, Confined atoms treated as open quantum systems, in Advances in Quantum Chemistry, vol. 57 (Elsevier, Amsterdam, 2009)
J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005)
R. Cammi, Molecular Response Functions for the Polarizable Continuum Model: Physical Basis and Quantum Mechanical Formalism (Spriger, Heidelberg, 2013)
R. Cammi, V. Verdolino, B. Mennucci, J. Tomasi, Chem. Phys. 344, 135 (2008)
R. Cammi, C. Cappelli, B. Mennucci, J. Tomasi, J. Chem. Phys. 137, 154112 (2012)
M. Pagliai, G. Cardini, R. Cammi, J. Phys. Chem. A 118, 5098 (2014)
M. Pagliai, G. Cardini, R. Cammi, V. Schettino, J. Phys. Chem. A 120, 5136 (2016)
R. Fukuda, M. Ehara, R. Cammi, J. Chem. Theor. Comp. 11, 2063 (2015)
R. Cammi, J. Comp. Chem. 36, 2246 (2015)
C. Amovilli, B. Mennucci, J. Phys. Chem. B 101, 1051 (1997)
A. Pomogova, D. Chipman, J. Phys. Chem. A 117, 5212 (2014)
A. Pomogova, D. Chipman, J. Chem. Theo. Comp. A 10, 211 (2014)
The value of parameter \(\eta \) can be estimated from a comparison of the equation of state of the pressure \(p\) as a function of the cavity volume \(V_c\) with the macroscopic equation of state \(p - V\) of several solvents [5, 6, 8]. Actual values of \(\eta \) are with the range \(\eta = 3-9\), and a higher value of the hardness parameter \(\eta \) is indicative of a harder Pauli barrier potential of the medium
The energy eigenvalue E is not the basic energy quantity of the PCM-XP model. \(E\) refers to the total energy of the solute-solvent system with respect to a fictitious reference state, which depends on the wave-function \(|\varPsi >\). For more details on the status of the energy eigenvalue E see, for example, Ref. [2]
H. Hellmann, Einführung in die Quantenchemie (Franz Deuticke, Leipzig, 1937), p. 285
R. Feynman, Phys. Rev. 56, 340 (1939)
R. Cammi, J. Chem. Phys. 140, 084112 (2014)
A. Bondi, J. Phys. Chem. 68, 441 (1964)
Here we assume that the geometry of the cavity remains fixed during the geometry optimization of the molecular solute. As pointed out in the previous section, this assumption implies that the electronic free-energy functional \(G_{e-r}\) acts as potential energy surface for the nuclei of the solute
Y. Fujimura, S.H. Lin, H. Eyring, Proc. Natl. Acad. Sci. USA 77, 5032 (1980)
S.S.M. Konda, J.N. Brantley, C.W. Bielawski, D.E. Makarov, Chemical reactions modulated by mechanical stress: extended Bell theory. J. Chem. Phys. 135, 164103 (2011)
H. Nakatsuji, J. Am. Chem. Soc. 95, 345 (1973)
J. Tomasi, G. Alagona, R. Bonacccorsi, C. Ghio, R. Cammi, Semiclassical interpretation of intramolecular interactions, in Theoretical Models of Chemical Bonding, ed. by Maksić, vol. 3 (Springer, Berlin, 1991)
Y. Honda, H. Nakatsuji, Chem. Phys. Lett. 293, 230 (1998)
J.O. Hirschfelder, J. Chem. Edu. 43, 457 (1966)
Acknowledgements
The author thanks Dr. M. Frisch (Gaussian Inc.) for collaboration, Prof. B. Kirtmann (University of California, Santa Barbara) for discussions on the pressure effects on the vibrational properties, and all the Editors for the invitation to contribute to this book. The systematic application of the XP-PCM method to the study of various molecular properties and processes under high pressure has required fruitful collaborations with many people (C. Cappelli, B. Mennucci, J. Tomasi, G. Cardini, M. Pagliai, V. Schettino, M. Ehara, and R. Fukuda) that are here collectively acknowledged. Dr. M. Paglia (University of Florence, Italy) is also thanked for graphic material used in Fig. 12.2.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Cammi, R. (2018). Quantum Chemistry at the High Pressures: The eXtreme Pressure Polarizable Continuum Model (XP-PCM). In: Wójcik, M., Nakatsuji, H., Kirtman, B., Ozaki, Y. (eds) Frontiers of Quantum Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-5651-2_12
Download citation
DOI: https://doi.org/10.1007/978-981-10-5651-2_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-5650-5
Online ISBN: 978-981-10-5651-2
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)