Skip to main content

Quantum Chemistry at the High Pressures: The eXtreme Pressure Polarizable Continuum Model (XP-PCM)

  • Chapter
  • First Online:
Frontiers of Quantum Chemistry
  • 2109 Accesses

Abstract

In this chapter, we review some recent developments in our XP-PCM method to introduce the effect of high pressure (\(\text {p} >1\) GPa) in the quantum chemistry study of molecular properties and processes. After a presentation of the physical basis and the computational aspects of the XP-PCM model, we give examples of its recent applications. These applications regard the study and analysis of the electron distribution, of the equilibrium geometry, and of the vibrational frequencies of molecular systems under high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An alternative definition of the operator \(V_r\) has been recently given by Chipman and co-workers in terms of the gradients of the electron density operator [11, 12].

  2. 2.

    The factor 1 / 2 in front to the operator \(\hat{V}_{e}({|\varPsi >})\) is due to the nonlinear nature of this operator, and \({\tilde{V}}_{nn}\) is the nuclei–nuclei interaction contribution in the presence of the external medium.

  3. 3.

    Formally, the Pauli repulsion operator for N electrons of Eq. (12.2) may be written as \(\hat{V}_{r}=\hat{v}_r(\mathbf r)\) with \(\hat{v}_r(\mathbf r)=\delta (\mathbf {r}-\mathbf {r'}_i)V_0 \varTheta (\mathbf {r})\).

  4. 4.

    An uncoupled molecular orbital (MO) perturbation scheme is a perturbation method that evaluates the effect of the perturbation on the molecular orbital by neglecting the effects that the perturbation has on the electron–electron repulsion contribution of the Fock operator.

  5. 5.

    For reasons of space, we can no further discuss this connection between our XP-PCM theory with the Bell theory and its extensions.

References

  1. A. Michels, J. De Boers, A. Bijl, Physica 4, 981 (1937); A. Sommerfeld, H. Welker, Ann. Phys. 32, 56 (1938); C.A. ten Seldam, S.R. de Groot, Physica 18, 891 (1952); E.V. Ludeña, J. Chem. Phys. 69, 1770 (1978); R. LeSar, D.R. Herschbach, J. Phys. Chem. 85, 2798 (1981); R. LeSar, D.R. Herschbach, J. Phys. Chem. 87, 5202 (1983); J. Gorecki, W. Byers Brown, J. Chem. Phys. 89, 2138 (1988); J.P. Connerade, R. Smaoune, J. Phys. B 33, 3467 (2000); K.D. Sen, B. Mayer, P.C. Schmidt, J. Garza, R. Vragas, A. Vela, Int. J. Quantum Chem. 90, 491 (2002); S.A. Cruz, J. Soullard, Chem. Phys. Lett. 391, 138 (2004); R.F.W. Bader, Confined atoms treated as open quantum systems, in Advances in Quantum Chemistry, vol. 57 (Elsevier, Amsterdam, 2009)

    Google Scholar 

  2. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 105, 2999 (2005)

    Article  CAS  Google Scholar 

  3. R. Cammi, Molecular Response Functions for the Polarizable Continuum Model: Physical Basis and Quantum Mechanical Formalism (Spriger, Heidelberg, 2013)

    Book  Google Scholar 

  4. R. Cammi, V. Verdolino, B. Mennucci, J. Tomasi, Chem. Phys. 344, 135 (2008)

    Article  CAS  Google Scholar 

  5. R. Cammi, C. Cappelli, B. Mennucci, J. Tomasi, J. Chem. Phys. 137, 154112 (2012)

    Article  CAS  Google Scholar 

  6. M. Pagliai, G. Cardini, R. Cammi, J. Phys. Chem. A 118, 5098 (2014)

    Article  CAS  Google Scholar 

  7. M. Pagliai, G. Cardini, R. Cammi, V. Schettino, J. Phys. Chem. A 120, 5136 (2016)

    Google Scholar 

  8. R. Fukuda, M. Ehara, R. Cammi, J. Chem. Theor. Comp. 11, 2063 (2015)

    Article  CAS  Google Scholar 

  9. R. Cammi, J. Comp. Chem. 36, 2246 (2015)

    Article  CAS  Google Scholar 

  10. C. Amovilli, B. Mennucci, J. Phys. Chem. B 101, 1051 (1997)

    Article  CAS  Google Scholar 

  11. A. Pomogova, D. Chipman, J. Phys. Chem. A 117, 5212 (2014)

    Google Scholar 

  12. A. Pomogova, D. Chipman, J. Chem. Theo. Comp. A 10, 211 (2014)

    Article  Google Scholar 

  13. The value of parameter \(\eta \) can be estimated from a comparison of the equation of state of the pressure \(p\) as a function of the cavity volume \(V_c\) with the macroscopic equation of state \(p - V\) of several solvents [5, 6, 8]. Actual values of \(\eta \) are with the range \(\eta = 3-9\), and a higher value of the hardness parameter \(\eta \) is indicative of a harder Pauli barrier potential of the medium

    Google Scholar 

  14. The energy eigenvalue E is not the basic energy quantity of the PCM-XP model. \(E\) refers to the total energy of the solute-solvent system with respect to a fictitious reference state, which depends on the wave-function \(|\varPsi >\). For more details on the status of the energy eigenvalue E see, for example, Ref. [2]

    Google Scholar 

  15. H. Hellmann, Einführung in die Quantenchemie (Franz Deuticke, Leipzig, 1937), p. 285

    Google Scholar 

  16. R. Feynman, Phys. Rev. 56, 340 (1939)

    Article  CAS  Google Scholar 

  17. R. Cammi, J. Chem. Phys. 140, 084112 (2014)

    Article  CAS  Google Scholar 

  18. A. Bondi, J. Phys. Chem. 68, 441 (1964)

    Article  CAS  Google Scholar 

  19. Here we assume that the geometry of the cavity remains fixed during the geometry optimization of the molecular solute. As pointed out in the previous section, this assumption implies that the electronic free-energy functional \(G_{e-r}\) acts as potential energy surface for the nuclei of the solute

    Google Scholar 

  20. Y. Fujimura, S.H. Lin, H. Eyring, Proc. Natl. Acad. Sci. USA 77, 5032 (1980)

    Article  CAS  Google Scholar 

  21. S.S.M. Konda, J.N. Brantley, C.W. Bielawski, D.E. Makarov, Chemical reactions modulated by mechanical stress: extended Bell theory. J. Chem. Phys. 135, 164103 (2011)

    Google Scholar 

  22. H. Nakatsuji, J. Am. Chem. Soc. 95, 345 (1973)

    Article  CAS  Google Scholar 

  23. J. Tomasi, G. Alagona, R. Bonacccorsi, C. Ghio, R. Cammi, Semiclassical interpretation of intramolecular interactions, in Theoretical Models of Chemical Bonding, ed. by Maksić, vol. 3 (Springer, Berlin, 1991)

    Google Scholar 

  24. Y. Honda, H. Nakatsuji, Chem. Phys. Lett. 293, 230 (1998)

    Article  CAS  Google Scholar 

  25. J.O. Hirschfelder, J. Chem. Edu. 43, 457 (1966)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. M. Frisch (Gaussian Inc.) for collaboration, Prof. B. Kirtmann (University of California, Santa Barbara) for discussions on the pressure effects on the vibrational properties, and all the Editors for the invitation to contribute to this book. The systematic application of the XP-PCM method to the study of various molecular properties and processes under high pressure has required fruitful collaborations with many people (C. Cappelli, B. Mennucci, J. Tomasi, G. Cardini, M. Pagliai, V. Schettino, M. Ehara, and R. Fukuda) that are here collectively acknowledged. Dr. M. Paglia (University of Florence, Italy) is also thanked for graphic material used in Fig. 12.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cammi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cammi, R. (2018). Quantum Chemistry at the High Pressures: The eXtreme Pressure Polarizable Continuum Model (XP-PCM). In: Wójcik, M., Nakatsuji, H., Kirtman, B., Ozaki, Y. (eds) Frontiers of Quantum Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-10-5651-2_12

Download citation

Publish with us

Policies and ethics