Desalination by Reverse Osmosis

  • A. J. KarabelasEmail author
  • C. P. Koutsou
  • D. C. Sioutopoulos
  • K. V. Plakas
  • M. Kostoglou
Part of the Green Chemistry and Sustainable Technology book series (GCST)


This chapter deals with the main techno-economic and environmental issues involved in assessing the sustainability of RO membrane technology for water desalination. The technical and economic aspects of desalination plant design and operation are reviewed, focusing on the key parameters of specific energy consumption (SEC) and product water unit cost, which are significantly affected by the main RO process part of the plant. Analysis of factors affecting these parameters helps to identify technical areas for improvements, particularly for seawater desalination. Improving the efficiency of high pressure pumps and of energy recovery devices as well as the permeability and antifouling characteristics of RO membranes appear to be high priority R&D targets, combined with efforts to improve membrane module design. Regarding environmental impact, in addition to SEC, the raw water intake facility and the effluent-brine handling practices tend to get increasing attention and are expected to dominate in the overall sustainability assessment in the coming years, despite their modest direct contribution to the product water unit cost at present. Consequently, there is also a clear priority for R&D work related to the intake facility and the brine handling and/or utilization methods. Difficulties encountered in implementing a comprehensive sustainability assessment of RO membrane desalination are outlined.


RO desalination Sustainability assessment Techno-economic and environmental issues Specific energy consumption Product water unit cost Feedwater intake and pretreatment Concentrate handling R&D priorities 

List of Symbols


Leakage ratio of ERD


Salt concentration at the membrane surface


Local salt concentration at membrane surface element ΔΑ


Salt concentration in the retentate bulk


Local flux at membrane surface element ΔΑ


Feed pressure


Concentrate pressure


Permeate pressure


Local retentate-side pressure


Local permeate-side pressure


Brine flow rate


Feed flow rate


Leakage flow rate in ERD


Total permeate flow rate


Local membrane permeation flow rate (=J i ΔΑ)


Local retentate flow rate


Local flow rate in the permeate channel


Desalinated water recovery


Clean membrane resistance


Membrane fouling resistance


Specific energy consumption


SEC under ideal conditions, i.e., zero inefficiency of pumps and ERD


SEC due to nonideal pump and ERD operation


SEC to overcome osmotic pressure


SEC due to membrane filtration resistance


SEC due to fluid friction losses in the SWM module retentate channels


SEC due to fluid friction losses in the SWM module permeate channels


SEC to overcome the osmotic pressure of the bulk fluid


SEC due to concentration polarization


Total hydraulic power


Osmotic pressure difference across the membrane


Pressure difference across pressure vessel


Membrane surface element for local computations


Local pressure difference at the retentate channel


Local pressure difference at the permeate channel


Pressure transfer efficiency of ERD


Overall pump efficiency


Hydraulic pump efficiency


Electrical motor efficiency


Variable frequency drive efficiency


Water viscosity


  1. 1.
    Voutchkov N (2016) Desalination—past, present and future. IWA Retrieved 10 Nov 2016
  2. 2.
    Bluefield Research (2016) Focus report—public-private partnerships in water: company strategies & market opportunities, 2016–2020., Feb 2016
  3. 3.
    Ghaffour N, Missimer TM, Amy GL (2013) Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207CrossRefGoogle Scholar
  4. 4.
    Amy G, Ghaffour N, Li Z, Francis L, Linares RV, Missimer T, Lattemann S (2017) Membrane-based seawater desalination: present and future prospects. Desalination 401:16–21CrossRefGoogle Scholar
  5. 5.
    Lapuente E (2012) Full cost in desalination. A case study of the Segura River Basin. Desalination 300:40–45CrossRefGoogle Scholar
  6. 6.
    Matsuura T (1993) Synthetic membranes and membrane separation processes. CRC Press, New York. ISBN 0-8493-4202-3Google Scholar
  7. 7.
    Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination development to date and future potential. J Membr Sci 370(1–2):1–22CrossRefGoogle Scholar
  8. 8.
    Fane AG, Wang R, Hu MX (2015) Synthetic membranes for water purification: status and future. Angew Chem Int Ed 54:3368–3386CrossRefGoogle Scholar
  9. 9.
    Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res 43:2317–2348CrossRefGoogle Scholar
  10. 10.
    Stover RL (2004) Development of a fourth generation energy recovery device. A ‘CTO’s notebook’. Desalination 165:313–321CrossRefGoogle Scholar
  11. 11.
    Stover RL (2007) Seawater reverse osmosis with isobaric energy recovery devices. Desalination 203:168–175CrossRefGoogle Scholar
  12. 12.
    Semiat R (2008) Energy issues in desalination processes. Environ Sci Technol 42(22):8193–8201CrossRefGoogle Scholar
  13. 13.
    Fritzmann C, Löwenberg J, Wintgens T, Melin T (2007) State-of-the-art of reverse osmosis desalination. Desalination 216(1–3):1–76CrossRefGoogle Scholar
  14. 14.
    Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology and the environment. Science 333(6043):712–717CrossRefGoogle Scholar
  15. 15.
    Wilf M, Awerbuch L, Bartels C, Mickley M, Pearce G, Voutchkov N (2007) The guidebook to membrane desalination technology: reverse osmosis, nanofiltration and hybrid systems process, design, applications and economics. Balaban Desalination Publications, L’AquilaGoogle Scholar
  16. 16.
    Voutchkov N (2013) desalination engineering: planning and design. Mc Graw Hill, New York. ISBN: 978-0-07-177716-2Google Scholar
  17. 17.
    Drioli E, Ali A, Macedonio F (2015) Membrane distillation: recent developments and perspectives. Desalination 356:56–84CrossRefGoogle Scholar
  18. 18.
    Al Marzooqi AFA, Al Ghaferi AA, Saadat I, Hilal N (2014) Application of capacitive deionisation in water desalination: a review. Desalination 342:3–15CrossRefGoogle Scholar
  19. 19.
    Tufa RA, Curcio E, Brauns E, van Baak W, Fontananova E, Di Profio G (2015) Membrane distillation and reverse electrodialysis for near-zero liquid discharge and low energy seawater desalination. J Membr Sci 496:325–333CrossRefGoogle Scholar
  20. 20.
    Faigon M (2016) Success behind advanced SWRO desalination plant. Filtr Sep 53(3):29–31CrossRefGoogle Scholar
  21. 21.
    Lior N (2013) Water desalination sustainability: critical review and a proposed methodology, Paper TIAN13-179. In: Proceedings of the International Desalination Association World Congress on Desalination and Water Reuse 2013/Tianjin, China, 20–25 Oct 2013Google Scholar
  22. 22.
    Lior N (2017) Sustainability as the quantitative norm for water desalination impacts. Desalination 401:99–111CrossRefGoogle Scholar
  23. 23.
    Lattemann S, Hoepner T (2008) Environmental impact and impact assessment of seawater desalination. Desalination 220:1–15CrossRefGoogle Scholar
  24. 24.
    Lattemann S., Rodriguez SG, Kennedy MD, Schippers JC, Amy GL (2013) Environmental and performance aspects of pretreatment and desalination technologies. In: Lior N (ed) Advances in water desalination, 1st edn. Wiley, New YorkGoogle Scholar
  25. 25.
    Gude VG (2016) Desalination and sustainability—an appraisal and current perspective. Water Res 89:87–106CrossRefGoogle Scholar
  26. 26.
    Yiantsios SG, Sioutopoulos D, Karabelas AJ (2005) Colloidal fouling of RO membranes: an overview of key issues and efforts to develop improved prediction techniques. Desalination 183:773–788CrossRefGoogle Scholar
  27. 27.
    Ning RY (1999) Reverse osmosis process chemistry relevant to the Gulf. Desalination 123:157–164CrossRefGoogle Scholar
  28. 28.
    Kreshman SA (1985) Seawater intakes for desalination plants in Libya. Desalination 55:493–502CrossRefGoogle Scholar
  29. 29.
    Berktay A (2011) Environmental approach and influence of red tide to desalination process in the Middle East region. Int J Chem Environ Eng 2(3):183–188Google Scholar
  30. 30.
    Anderson DM, McCarthy S (eds) (2012) Red tides and harmful algal blooms: impacts on desalination systems. Middle East Desalination Research Center, Muscat, OmanGoogle Scholar
  31. 31.
    Voutchkov N (2005) SWRO desalination process: on the beach–seawater intakes. Filtr Sep 42(8):24–27CrossRefGoogle Scholar
  32. 32.
    Missimer TM, Ghaffour N, Dehwah AHA, Rachman R, Maliva RG, Amy G (2013) Subsurface intakes for seawater reverse osmosis facilities: capacity limitation, water quality improvement and economics. Desalination 322:37–51CrossRefGoogle Scholar
  33. 33.
    Mackey ED, Pozos N, James W, Seacord T, Hunt H, Mayer DL (2011) Assessing seawater intake systems for desalination plants. Water Research Foundation Report. ISBN 978-1-60573-124-7Google Scholar
  34. 34.
    WateReuse Association, Desalination Plant Intakes: Impingement and Entrainment Impacts and Solutions, WateReuse Association White PaperGoogle Scholar
  35. 35.
    WateReuse Association, Seawater Concentrate Management, WateReuse Association White Paper, 2011Google Scholar
  36. 36.
    Henthorne L, Boysen B (2015) State-of-the-art of reverse osmosis desalination pretreatment. Desalination 356:129–139CrossRefGoogle Scholar
  37. 37.
    Pearce G (2007) The case for UF/MF pretreatment to RO in seawater applications. Desalination 203:286–295CrossRefGoogle Scholar
  38. 38.
    Voutchkov N (2009) Conventional and membrane filtration: selecting a SWRO pre-treatment system, Filtration + Separation, 09. Feb 2009
  39. 39.
    Pearce GK (2010) SWRO pre-treatment: Integrity and disinfection, Filtration + Separation, pp 32–35, Jan/Feb 2010Google Scholar
  40. 40.
    Pearce GK (2010b) SWRO pre-treatment: cost and sustainability, Filtration + Separation, pp 36–38, Jan/Feb 2010Google Scholar
  41. 41.
    Melin T, Wintgens T, Niewersch C, Fritzmann C (2007) Comparative life cycle assessment study of pre-treatment alternatives for RO. In: IDA conference proceedings, MP07–091, Gran Canaria, Oct 2007Google Scholar
  42. 42.
    Johnson JE, Busch M (2010) Engineering aspects of reverse osmosis module design. Desalin Water Treat 15:236–248CrossRefGoogle Scholar
  43. 43.
    Kostoglou M, Karabelas AJ (2013) Comprehensive simulation of flat-sheet membrane element performance in steady state desalination. Desalination 316:91–102CrossRefGoogle Scholar
  44. 44.
    Karabelas AJ, Koutsou CP, Kostoglou M (2014) The effect of spiral wound membrane element design characteristics on its performance in steady state desalination - A parametric study. Desalination 332:76–90CrossRefGoogle Scholar
  45. 45.
    Koutsou CP, Karabelas AJ, Kostoglou M (2015) Membrane desalination under constant water recovery—the effect of module design parameters on system performance. Sep Purif Technol 147:90–113CrossRefGoogle Scholar
  46. 46.
    Karabelas AJ (2014) Key issues for improving the design and operation of membrane modules for desalination plants. Desalin Water Treat 52(10–12):1820–1832CrossRefGoogle Scholar
  47. 47.
    Jiang A, Wang J, Biegler LT, Cheng W, Xing C, Jiang Z (2015) Operational cost optimization of a full-scale SWRO system under multi-parameter variable conditions. Desalination 355:124–140CrossRefGoogle Scholar
  48. 48.
    Ghobeity A, Mitsos A (2010) Optimal time-dependent operation of seawater reverse osmosis. Desalination 263:76–88CrossRefGoogle Scholar
  49. 49.
    Wilf M, Bartels C (2005) Optimization of seawater RO systems design. Desalination 173(1):1–12CrossRefGoogle Scholar
  50. 50.
    Karabelas AJ, Koutsou CP, Kostoglou M, Sioutopoulos DC (2017) Analysis of specific energy consumption in reverse osmosis desalination processes. Desalination. doi: 10.1016/j.desal.2017.04.006
  51. 51.
    Karabelas AJ, Sioutopoulos DC (2015) New insights into organic gel fouling of reverse osmosis desalination membranes. Desalination 368:114–126CrossRefGoogle Scholar
  52. 52.
  53. 53.
    Takabatake H, Noto K, Uemura T, Ueda S (2013) More then 30% energy saving seawater desalination system by combining with sewage reclamation. Desalin Water Treat 51:733–741CrossRefGoogle Scholar
  54. 54.
    Pendergast MM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971CrossRefGoogle Scholar
  55. 55.
    Karabelas AJ, Kostoglou M, Koutsou CP (2015) Modeling of spiral wound membrane desalination modules and plants—review and research priorities. Desalination 356:165–186CrossRefGoogle Scholar
  56. 56.
    Koutsou CP, Yiantsios SG, Karabelas AJ (2009) A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number. J Membr Sci 326:234–251CrossRefGoogle Scholar
  57. 57.
    Vrouwenvelder JS, Graf von der Schulenburg DA, Kruithof JC, Johns ML, van Loosdrecht MCM (2009) Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem. Water Res 43(3):583–594CrossRefGoogle Scholar
  58. 58.
    Hoek EMV, Elimelech M (2003) Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes. Environ Sci Technol 37(24):5581–5588CrossRefGoogle Scholar
  59. 59.
    Kostoglou M, Karabelas AJ (2013) Modeling scale formation in flat-sheet membrane modules during water desalination. A.I.Ch.E J 59/8:2917–2927Google Scholar
  60. 60.
    Kostoglou M, Karabelas AJ (2016) Dynamic operation of flat sheet desalination-membrane elements: a comprehensive model accounting for organic fouling. Comput Chem Eng 93:1–12CrossRefGoogle Scholar
  61. 61.
    Shrivastava A, Rosenberg S, Peery M (2015) Energy efficiency breakdown of reverse osmosis and its implications on future innovation roadmap for desalination. Desalination 368:181–192CrossRefGoogle Scholar
  62. 62.
    Zhu A, Christofides PD, Cohen Y (2009) Effect of thermodynamic restriction on energy cost optimization of RO membrane water desalination. Ind Eng Chem Res 48:6010–6021CrossRefGoogle Scholar
  63. 63.
    Lattemann S, Hoepner T (2003) Seawater desalination—impacts of brine and chemical discharge into the environment. Desalination Publications, L’Aquila. ISBN 0-86689-062-9Google Scholar
  64. 64.
    Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471CrossRefGoogle Scholar
  65. 65.
    Mitrouli S, Karabelas AJ, Karanasiou A, Kostoglou M (2013) Incipient calcium carbonate scaling of desalination membranes in narrow channels with spacers—experimental insights. J Membr Sci 425–426:48–57CrossRefGoogle Scholar
  66. 66.
    Karabelas AJ, Karanasiou A, Mitrouli ST (2014) Incipient membrane scaling by calcium sulfate during desalination in narrow spacer-filled channels. Desalination 345:146–157CrossRefGoogle Scholar
  67. 67.
    Hasson D, Shemer H, Sher A (2011) State of the art of friendly “green” scale control inhibitors: a review article. Ind Eng Chem Res 50:7601–7607CrossRefGoogle Scholar
  68. 68.
    Tarnacki K, Meneses M, Melin T, van Medevoort J, Jansen A (2012) Environmental assessment of desalination processes: reverse osmosis and Memstill®. Desalination 296:69–80CrossRefGoogle Scholar
  69. 69.
    Sioutopoulos DC, Karabelas AJ (2012) Correlation of organic fouling resistances in RO and UF membrane filtration under constant flux and constant pressure. J Membr Sci 407–408:34–46CrossRefGoogle Scholar
  70. 70.
    Birnhack L, Voutchkov N, Lahav O (2011) Fundamental chemistry and engineering aspects of post-treatment processes for desalinated water—a review. Desalination 273:6–22CrossRefGoogle Scholar
  71. 71.
    Shemer H, Hasson D, Semiat R (2015) State-of-the-art review on post-treatment technologies. Desalination 356:285–293CrossRefGoogle Scholar
  72. 72.
    Voutchkov N. (2017) Re-mineralization of desalinated water, A SunCam online continuing education course, Accessed Feb 2017
  73. 73.
    Greiserman M, Hasson D, Semiat R, Shemer H (2016) Kinetics of dolomite dissolution in a packed bed by acidified desalinated water. Desalination 396:39–47CrossRefGoogle Scholar
  74. 74.
    Mickley MC (2009) Treatment of Concentrate, Desalination and Water Purification Research and Development Program Report No. 155, U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center, Denver, ColoradoGoogle Scholar
  75. 75.
    Lattemann S, El-Habr HN (2009) UNEP resource and guidance manual for environmental impact assessment of desalination projects. Desalin Water Treat 3(1–3):217–228CrossRefGoogle Scholar
  76. 76.
    Lattemann S (2008) Desalination: resource and guidance manual for environmental impact assessments, © UNEP/ROWA/WHO-EMRO ISBN: 978-92-807-2840-8Google Scholar
  77. 77.
    Voutchkov N (2011) Overview of seawater concentrate disposal alternatives. Desalination 273:205–219CrossRefGoogle Scholar
  78. 78.
    Morillo J, Usero J, Rosado D, El Bakouri H, Riaza A, Bernaola F-J (2014) Comparative study of brine management technologies for desalination plants. Desalination 336:32–49CrossRefGoogle Scholar
  79. 79.
    Subramani A, Jacangelo JG (2014) Treatment technologies for reverse osmosis concentrate volume minimization: a review. Sep Purif Technol 122:472–489CrossRefGoogle Scholar
  80. 80.
    Joo SH, Tansel B (2015) Novel technologies for reverse osmosis concentrate treatment: a review. J Environ Manage 150:322–335CrossRefGoogle Scholar
  81. 81.
    Perez-Gonzalez Urtiaga AM, Ibanez R, Ortiz I (2012) State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res 46:267–283CrossRefGoogle Scholar
  82. 82.
    Voutchkov N (2012) Energy use for seawater desalination - current status and future trends. In: Lazarova V, Choo K-H, Cornel P (eds) Water-energy interactions in water reuse. IWA Publishing, London, pp 227–241Google Scholar
  83. 83.
    Loeb S (1976) Production of energy from concentrated brines by pressure-retarded osmosis. I. Preliminary technical and economic correlations. J Membr Sci 1:49–63CrossRefGoogle Scholar
  84. 84.
    Straub S.P. (2016) Akshay Deshmukh and Menachem Elimelech Pressure-retarded osmosis for power generation from salinity gradients: is it viable? Energy Environ Sci 9:31–48Google Scholar
  85. 85.
    US Energy Information Administration Retrieved 20 Aug 2016
  86. 86.
    Dawoud MA, Al Mulla MM (2012) Environmental impacts of seawater desalination: Arabian Gulf case study. Int J Environ Sustain 1(3):22–37CrossRefGoogle Scholar
  87. 87.
    Rodriguez-Gonzalez Jiminez JJ, Trujillo V, Veza J (2002) Reuse of reverse osmosis membranes in advanced wastewater treatment. Desalination 150:219–225CrossRefGoogle Scholar
  88. 88.
    Lawler W, Antony A, Cran M, Duke M, Leslie G, Le-Clech P (2013) Production and characterization of UF membranes by chemical conversion of used RO membranes. J Membr Sci 447:203–211CrossRefGoogle Scholar
  89. 89.
    Landaburu-Aguirre J, García-Pacheco R, Molina S, Rodríguez-Sáez L, Rabadán J, García-Calvo E (2016) Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination 393:16–30CrossRefGoogle Scholar
  90. 90.
    Isaias N, Karabelas AJ, Mitrouli S (2015) Application of rejection enhancing agents (REAs) that do not have cloud point limitations on desalination membranes. US Patent No. 9,216,385, Dec 23, 2015Google Scholar
  91. 91.
    Mitrouli ST, Karabelas AJ, Isaias NP, Sioutopoulos DC, Al Rammah AS (2010) Reverse osmosis membrane treatment improves salt-rejection performance. IDA J 2(2):22–33Google Scholar
  92. 92.
    Lawler W, Alvarez-Gaitan J, Greg Leslie G, Le-Clech P (2015) Comparative life cycle assessment of end-of-life options for reverse osmosis membranes. Desalination 357:45–54CrossRefGoogle Scholar
  93. 93.
    Sarai Atab M, Smallbone AJ, Roskilly AP (2016) An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation. Desalination 397:174–184CrossRefGoogle Scholar
  94. 94.
    Loutatidou S, Arafat HA (2015) Techno-economic analysis of MED and RO desalination powered by low-enthalpy geothermal energy. Desalination 365:277–292. doi: 10.1016/j.desal.2015.03.010 CrossRefGoogle Scholar
  95. 95.
    Dodgson JS, Spackman M, Pearman A, Phillips LD (2009) Multi-Criteria analysis: a manual. Communities and Local Government Publications, West YorkshireGoogle Scholar
  96. 96.
    Amer M, Daim TU (2011) Selection of renewable energy technologies for a developing county: a case of Pakistan. Energy Sustain Dev 15:420–435CrossRefGoogle Scholar
  97. 97.
    Voces R, Diaz-Balteiro L, Romero C (2012) Characterization and explanation of the sustainability of the European wood manufacturing industries: a quantitative approach. Expert Syst Appl 39(7):6618–6627CrossRefGoogle Scholar
  98. 98.
    Molinos-Senante M, Gómez T, Garrido-Baserba M, Caballero R, Sala-Garrido R (2014) Assessing the sustainability of small wastewater treatment systems: a composite indicator approach. Sci Total Environ 497–498:607–617CrossRefGoogle Scholar
  99. 99.
    Plakas KV, Georgiadis AA, Karabelas AJ (2016) Sustainability assessment of tertiary wastewater treatment technologies: a multi-criteria analysis. Water Sci Technol 73(7):1532–1540CrossRefGoogle Scholar
  100. 100.
    Jin Zhou, Chang VWC, Fane AG (2014) Life Cycle Assessment for desalination: A review on methodology feasibility and reliability. Water Res 61:210–223CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • A. J. Karabelas
    • 1
    Email author
  • C. P. Koutsou
    • 1
  • D. C. Sioutopoulos
    • 1
  • K. V. Plakas
    • 1
  • M. Kostoglou
    • 1
  1. 1.Chemical Process and Energy Resources Institute, Centre for Research and Technology-HellasThermi-ThessalonikiGreece

Personalised recommendations