Skip to main content

Abstract

This chapter deals with the main techno-economic and environmental issues involved in assessing the sustainability of RO membrane technology for water desalination. The technical and economic aspects of desalination plant design and operation are reviewed, focusing on the key parameters of specific energy consumption (SEC) and product water unit cost, which are significantly affected by the main RO process part of the plant. Analysis of factors affecting these parameters helps to identify technical areas for improvements, particularly for seawater desalination. Improving the efficiency of high pressure pumps and of energy recovery devices as well as the permeability and antifouling characteristics of RO membranes appear to be high priority R&D targets, combined with efforts to improve membrane module design. Regarding environmental impact, in addition to SEC, the raw water intake facility and the effluent-brine handling practices tend to get increasing attention and are expected to dominate in the overall sustainability assessment in the coming years, despite their modest direct contribution to the product water unit cost at present. Consequently, there is also a clear priority for R&D work related to the intake facility and the brine handling and/or utilization methods. Difficulties encountered in implementing a comprehensive sustainability assessment of RO membrane desalination are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

b :

Leakage ratio of ERD

C W :

Salt concentration at the membrane surface

(C Wi):

Local salt concentration at membrane surface element ΔΑ

C b :

Salt concentration in the retentate bulk

J i :

Local flux at membrane surface element ΔΑ

P f :

Feed pressure

P b :

Concentrate pressure

P o :

Permeate pressure

P Ri :

Local retentate-side pressure

P Pi :

Local permeate-side pressure

Q b :

Brine flow rate

Q f :

Feed flow rate

Q l :

Leakage flow rate in ERD

Q P :

Total permeate flow rate

Q Pi :

Local membrane permeation flow rate (=J i ΔΑ)

Q Ri :

Local retentate flow rate

q Pi :

Local flow rate in the permeate channel

R :

Desalinated water recovery

R m :

Clean membrane resistance

R c :

Membrane fouling resistance

SEC:

Specific energy consumption

SEC i :

SEC under ideal conditions, i.e., zero inefficiency of pumps and ERD

SECinef :

SEC due to nonideal pump and ERD operation

SECOS :

SEC to overcome osmotic pressure

SEC f :

SEC due to membrane filtration resistance

SEC R :

SEC due to fluid friction losses in the SWM module retentate channels

SEC P :

SEC due to fluid friction losses in the SWM module permeate channels

SECmin :

SEC to overcome the osmotic pressure of the bulk fluid

SECCP :

SEC due to concentration polarization

W total :

Total hydraulic power

Δπ(C W ):

Osmotic pressure difference across the membrane

ΔP :

Pressure difference across pressure vessel

ΔA :

Membrane surface element for local computations

ΔP Ri :

Local pressure difference at the retentate channel

ΔP Pi :

Local pressure difference at the permeate channel

η E :

Pressure transfer efficiency of ERD

η :

Overall pump efficiency

η hydr :

Hydraulic pump efficiency

η motor :

Electrical motor efficiency

η VFD :

Variable frequency drive efficiency

μ :

Water viscosity

References

  1. Voutchkov N (2016) Desalination—past, present and future. IWA www.iwa-network.org/desalination-past-present-future. Retrieved 10 Nov 2016

  2. Bluefield Research (2016) Focus report—public-private partnerships in water: company strategies & market opportunities, 2016–2020. www.bluefieldresearch.com, Feb 2016

  3. Ghaffour N, Missimer TM, Amy GL (2013) Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309:197–207

    Article  CAS  Google Scholar 

  4. Amy G, Ghaffour N, Li Z, Francis L, Linares RV, Missimer T, Lattemann S (2017) Membrane-based seawater desalination: present and future prospects. Desalination 401:16–21

    Article  CAS  Google Scholar 

  5. Lapuente E (2012) Full cost in desalination. A case study of the Segura River Basin. Desalination 300:40–45

    Article  CAS  Google Scholar 

  6. Matsuura T (1993) Synthetic membranes and membrane separation processes. CRC Press, New York. ISBN 0-8493-4202-3

    Google Scholar 

  7. Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination development to date and future potential. J Membr Sci 370(1–2):1–22

    Article  CAS  Google Scholar 

  8. Fane AG, Wang R, Hu MX (2015) Synthetic membranes for water purification: status and future. Angew Chem Int Ed 54:3368–3386

    Article  CAS  Google Scholar 

  9. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res 43:2317–2348

    Article  CAS  Google Scholar 

  10. Stover RL (2004) Development of a fourth generation energy recovery device. A ‘CTO’s notebook’. Desalination 165:313–321

    Article  CAS  Google Scholar 

  11. Stover RL (2007) Seawater reverse osmosis with isobaric energy recovery devices. Desalination 203:168–175

    Article  CAS  Google Scholar 

  12. Semiat R (2008) Energy issues in desalination processes. Environ Sci Technol 42(22):8193–8201

    Article  CAS  Google Scholar 

  13. Fritzmann C, Löwenberg J, Wintgens T, Melin T (2007) State-of-the-art of reverse osmosis desalination. Desalination 216(1–3):1–76

    Article  CAS  Google Scholar 

  14. Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology and the environment. Science 333(6043):712–717

    Article  CAS  Google Scholar 

  15. Wilf M, Awerbuch L, Bartels C, Mickley M, Pearce G, Voutchkov N (2007) The guidebook to membrane desalination technology: reverse osmosis, nanofiltration and hybrid systems process, design, applications and economics. Balaban Desalination Publications, L’Aquila

    Google Scholar 

  16. Voutchkov N (2013) desalination engineering: planning and design. Mc Graw Hill, New York. ISBN: 978-0-07-177716-2

    Google Scholar 

  17. Drioli E, Ali A, Macedonio F (2015) Membrane distillation: recent developments and perspectives. Desalination 356:56–84

    Article  CAS  Google Scholar 

  18. Al Marzooqi AFA, Al Ghaferi AA, Saadat I, Hilal N (2014) Application of capacitive deionisation in water desalination: a review. Desalination 342:3–15

    Article  CAS  Google Scholar 

  19. Tufa RA, Curcio E, Brauns E, van Baak W, Fontananova E, Di Profio G (2015) Membrane distillation and reverse electrodialysis for near-zero liquid discharge and low energy seawater desalination. J Membr Sci 496:325–333

    Article  CAS  Google Scholar 

  20. Faigon M (2016) Success behind advanced SWRO desalination plant. Filtr Sep 53(3):29–31

    Article  Google Scholar 

  21. Lior N (2013) Water desalination sustainability: critical review and a proposed methodology, Paper TIAN13-179. In: Proceedings of the International Desalination Association World Congress on Desalination and Water Reuse 2013/Tianjin, China, 20–25 Oct 2013

    Google Scholar 

  22. Lior N (2017) Sustainability as the quantitative norm for water desalination impacts. Desalination 401:99–111

    Article  CAS  Google Scholar 

  23. Lattemann S, Hoepner T (2008) Environmental impact and impact assessment of seawater desalination. Desalination 220:1–15

    Article  CAS  Google Scholar 

  24. Lattemann S., Rodriguez SG, Kennedy MD, Schippers JC, Amy GL (2013) Environmental and performance aspects of pretreatment and desalination technologies. In: Lior N (ed) Advances in water desalination, 1st edn. Wiley, New York

    Google Scholar 

  25. Gude VG (2016) Desalination and sustainability—an appraisal and current perspective. Water Res 89:87–106

    Article  CAS  Google Scholar 

  26. Yiantsios SG, Sioutopoulos D, Karabelas AJ (2005) Colloidal fouling of RO membranes: an overview of key issues and efforts to develop improved prediction techniques. Desalination 183:773–788

    Article  Google Scholar 

  27. Ning RY (1999) Reverse osmosis process chemistry relevant to the Gulf. Desalination 123:157–164

    Article  CAS  Google Scholar 

  28. Kreshman SA (1985) Seawater intakes for desalination plants in Libya. Desalination 55:493–502

    Article  Google Scholar 

  29. Berktay A (2011) Environmental approach and influence of red tide to desalination process in the Middle East region. Int J Chem Environ Eng 2(3):183–188

    Google Scholar 

  30. Anderson DM, McCarthy S (eds) (2012) Red tides and harmful algal blooms: impacts on desalination systems. Middle East Desalination Research Center, Muscat, Oman

    Google Scholar 

  31. Voutchkov N (2005) SWRO desalination process: on the beach–seawater intakes. Filtr Sep 42(8):24–27

    Article  Google Scholar 

  32. Missimer TM, Ghaffour N, Dehwah AHA, Rachman R, Maliva RG, Amy G (2013) Subsurface intakes for seawater reverse osmosis facilities: capacity limitation, water quality improvement and economics. Desalination 322:37–51

    Article  CAS  Google Scholar 

  33. Mackey ED, Pozos N, James W, Seacord T, Hunt H, Mayer DL (2011) Assessing seawater intake systems for desalination plants. Water Research Foundation Report. ISBN 978-1-60573-124-7

    Google Scholar 

  34. WateReuse Association, Desalination Plant Intakes: Impingement and Entrainment Impacts and Solutions, WateReuse Association White Paper

    Google Scholar 

  35. WateReuse Association, Seawater Concentrate Management, WateReuse Association White Paper, 2011

    Google Scholar 

  36. Henthorne L, Boysen B (2015) State-of-the-art of reverse osmosis desalination pretreatment. Desalination 356:129–139

    Article  CAS  Google Scholar 

  37. Pearce G (2007) The case for UF/MF pretreatment to RO in seawater applications. Desalination 203:286–295

    Article  CAS  Google Scholar 

  38. Voutchkov N (2009) Conventional and membrane filtration: selecting a SWRO pre-treatment system, Filtration + Separation, 09. http://www.filtsep.com/. Feb 2009

  39. Pearce GK (2010) SWRO pre-treatment: Integrity and disinfection, Filtration + Separation, pp 32–35, Jan/Feb 2010

    Google Scholar 

  40. Pearce GK (2010b) SWRO pre-treatment: cost and sustainability, Filtration + Separation, pp 36–38, Jan/Feb 2010

    Google Scholar 

  41. Melin T, Wintgens T, Niewersch C, Fritzmann C (2007) Comparative life cycle assessment study of pre-treatment alternatives for RO. In: IDA conference proceedings, MP07–091, Gran Canaria, Oct 2007

    Google Scholar 

  42. Johnson JE, Busch M (2010) Engineering aspects of reverse osmosis module design. Desalin Water Treat 15:236–248

    Article  Google Scholar 

  43. Kostoglou M, Karabelas AJ (2013) Comprehensive simulation of flat-sheet membrane element performance in steady state desalination. Desalination 316:91–102

    Article  CAS  Google Scholar 

  44. Karabelas AJ, Koutsou CP, Kostoglou M (2014) The effect of spiral wound membrane element design characteristics on its performance in steady state desalination - A parametric study. Desalination 332:76–90

    Article  CAS  Google Scholar 

  45. Koutsou CP, Karabelas AJ, Kostoglou M (2015) Membrane desalination under constant water recovery—the effect of module design parameters on system performance. Sep Purif Technol 147:90–113

    Article  CAS  Google Scholar 

  46. Karabelas AJ (2014) Key issues for improving the design and operation of membrane modules for desalination plants. Desalin Water Treat 52(10–12):1820–1832

    Article  CAS  Google Scholar 

  47. Jiang A, Wang J, Biegler LT, Cheng W, Xing C, Jiang Z (2015) Operational cost optimization of a full-scale SWRO system under multi-parameter variable conditions. Desalination 355:124–140

    Article  CAS  Google Scholar 

  48. Ghobeity A, Mitsos A (2010) Optimal time-dependent operation of seawater reverse osmosis. Desalination 263:76–88

    Article  CAS  Google Scholar 

  49. Wilf M, Bartels C (2005) Optimization of seawater RO systems design. Desalination 173(1):1–12

    Article  CAS  Google Scholar 

  50. Karabelas AJ, Koutsou CP, Kostoglou M, Sioutopoulos DC (2017) Analysis of specific energy consumption in reverse osmosis desalination processes. Desalination. doi:10.1016/j.desal.2017.04.006

  51. Karabelas AJ, Sioutopoulos DC (2015) New insights into organic gel fouling of reverse osmosis desalination membranes. Desalination 368:114–126

    Article  CAS  Google Scholar 

  52. http://www.hitachi.com/businesses/infrastructure/product_solution/water_environment/foreign/remix_water.html, Hitachi Global; information retrieved 20 Dec 2016

  53. Takabatake H, Noto K, Uemura T, Ueda S (2013) More then 30% energy saving seawater desalination system by combining with sewage reclamation. Desalin Water Treat 51:733–741

    Article  CAS  Google Scholar 

  54. Pendergast MM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971

    Article  CAS  Google Scholar 

  55. Karabelas AJ, Kostoglou M, Koutsou CP (2015) Modeling of spiral wound membrane desalination modules and plants—review and research priorities. Desalination 356:165–186

    Article  CAS  Google Scholar 

  56. Koutsou CP, Yiantsios SG, Karabelas AJ (2009) A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number. J Membr Sci 326:234–251

    Article  CAS  Google Scholar 

  57. Vrouwenvelder JS, Graf von der Schulenburg DA, Kruithof JC, Johns ML, van Loosdrecht MCM (2009) Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem. Water Res 43(3):583–594

    Article  CAS  Google Scholar 

  58. Hoek EMV, Elimelech M (2003) Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes. Environ Sci Technol 37(24):5581–5588

    Article  CAS  Google Scholar 

  59. Kostoglou M, Karabelas AJ (2013) Modeling scale formation in flat-sheet membrane modules during water desalination. A.I.Ch.E J 59/8:2917–2927

    Google Scholar 

  60. Kostoglou M, Karabelas AJ (2016) Dynamic operation of flat sheet desalination-membrane elements: a comprehensive model accounting for organic fouling. Comput Chem Eng 93:1–12

    Article  CAS  Google Scholar 

  61. Shrivastava A, Rosenberg S, Peery M (2015) Energy efficiency breakdown of reverse osmosis and its implications on future innovation roadmap for desalination. Desalination 368:181–192

    Article  CAS  Google Scholar 

  62. Zhu A, Christofides PD, Cohen Y (2009) Effect of thermodynamic restriction on energy cost optimization of RO membrane water desalination. Ind Eng Chem Res 48:6010–6021

    Article  CAS  Google Scholar 

  63. Lattemann S, Hoepner T (2003) Seawater desalination—impacts of brine and chemical discharge into the environment. Desalination Publications, L’Aquila. ISBN 0-86689-062-9

    Google Scholar 

  64. Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471

    Article  CAS  Google Scholar 

  65. Mitrouli S, Karabelas AJ, Karanasiou A, Kostoglou M (2013) Incipient calcium carbonate scaling of desalination membranes in narrow channels with spacers—experimental insights. J Membr Sci 425–426:48–57

    Article  Google Scholar 

  66. Karabelas AJ, Karanasiou A, Mitrouli ST (2014) Incipient membrane scaling by calcium sulfate during desalination in narrow spacer-filled channels. Desalination 345:146–157

    Article  CAS  Google Scholar 

  67. Hasson D, Shemer H, Sher A (2011) State of the art of friendly “green” scale control inhibitors: a review article. Ind Eng Chem Res 50:7601–7607

    Article  CAS  Google Scholar 

  68. Tarnacki K, Meneses M, Melin T, van Medevoort J, Jansen A (2012) Environmental assessment of desalination processes: reverse osmosis and Memstill®. Desalination 296:69–80

    Article  CAS  Google Scholar 

  69. Sioutopoulos DC, Karabelas AJ (2012) Correlation of organic fouling resistances in RO and UF membrane filtration under constant flux and constant pressure. J Membr Sci 407–408:34–46

    Article  Google Scholar 

  70. Birnhack L, Voutchkov N, Lahav O (2011) Fundamental chemistry and engineering aspects of post-treatment processes for desalinated water—a review. Desalination 273:6–22

    Article  CAS  Google Scholar 

  71. Shemer H, Hasson D, Semiat R (2015) State-of-the-art review on post-treatment technologies. Desalination 356:285–293

    Article  CAS  Google Scholar 

  72. Voutchkov N. (2017) Re-mineralization of desalinated water, A SunCam online continuing education course, http://s3.amazonaws.com/suncam/npdocs/118.pdf2011. Accessed Feb 2017

  73. Greiserman M, Hasson D, Semiat R, Shemer H (2016) Kinetics of dolomite dissolution in a packed bed by acidified desalinated water. Desalination 396:39–47

    Article  CAS  Google Scholar 

  74. Mickley MC (2009) Treatment of Concentrate, Desalination and Water Purification Research and Development Program Report No. 155, U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center, Denver, Colorado

    Google Scholar 

  75. Lattemann S, El-Habr HN (2009) UNEP resource and guidance manual for environmental impact assessment of desalination projects. Desalin Water Treat 3(1–3):217–228

    Article  Google Scholar 

  76. Lattemann S (2008) Desalination: resource and guidance manual for environmental impact assessments, © UNEP/ROWA/WHO-EMRO ISBN: 978-92-807-2840-8

    Google Scholar 

  77. Voutchkov N (2011) Overview of seawater concentrate disposal alternatives. Desalination 273:205–219

    Article  CAS  Google Scholar 

  78. Morillo J, Usero J, Rosado D, El Bakouri H, Riaza A, Bernaola F-J (2014) Comparative study of brine management technologies for desalination plants. Desalination 336:32–49

    Article  CAS  Google Scholar 

  79. Subramani A, Jacangelo JG (2014) Treatment technologies for reverse osmosis concentrate volume minimization: a review. Sep Purif Technol 122:472–489

    Article  CAS  Google Scholar 

  80. Joo SH, Tansel B (2015) Novel technologies for reverse osmosis concentrate treatment: a review. J Environ Manage 150:322–335

    Article  CAS  Google Scholar 

  81. Perez-Gonzalez Urtiaga AM, Ibanez R, Ortiz I (2012) State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res 46:267–283

    Article  CAS  Google Scholar 

  82. Voutchkov N (2012) Energy use for seawater desalination - current status and future trends. In: Lazarova V, Choo K-H, Cornel P (eds) Water-energy interactions in water reuse. IWA Publishing, London, pp 227–241

    Google Scholar 

  83. Loeb S (1976) Production of energy from concentrated brines by pressure-retarded osmosis. I. Preliminary technical and economic correlations. J Membr Sci 1:49–63

    Article  Google Scholar 

  84. Straub S.P. (2016) Akshay Deshmukh and Menachem Elimelech Pressure-retarded osmosis for power generation from salinity gradients: is it viable? Energy Environ Sci 9:31–48

    Google Scholar 

  85. US Energy Information Administration https://www.eia.gov/tools/faqs/faq.cfm?id=74&t=11. Retrieved 20 Aug 2016

  86. Dawoud MA, Al Mulla MM (2012) Environmental impacts of seawater desalination: Arabian Gulf case study. Int J Environ Sustain 1(3):22–37

    Article  Google Scholar 

  87. Rodriguez-Gonzalez Jiminez JJ, Trujillo V, Veza J (2002) Reuse of reverse osmosis membranes in advanced wastewater treatment. Desalination 150:219–225

    Article  Google Scholar 

  88. Lawler W, Antony A, Cran M, Duke M, Leslie G, Le-Clech P (2013) Production and characterization of UF membranes by chemical conversion of used RO membranes. J Membr Sci 447:203–211

    Article  CAS  Google Scholar 

  89. Landaburu-Aguirre J, García-Pacheco R, Molina S, Rodríguez-Sáez L, Rabadán J, García-Calvo E (2016) Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination 393:16–30

    Article  CAS  Google Scholar 

  90. Isaias N, Karabelas AJ, Mitrouli S (2015) Application of rejection enhancing agents (REAs) that do not have cloud point limitations on desalination membranes. US Patent No. 9,216,385, Dec 23, 2015

    Google Scholar 

  91. Mitrouli ST, Karabelas AJ, Isaias NP, Sioutopoulos DC, Al Rammah AS (2010) Reverse osmosis membrane treatment improves salt-rejection performance. IDA J 2(2):22–33

    Google Scholar 

  92. Lawler W, Alvarez-Gaitan J, Greg Leslie G, Le-Clech P (2015) Comparative life cycle assessment of end-of-life options for reverse osmosis membranes. Desalination 357:45–54

    Article  CAS  Google Scholar 

  93. Sarai Atab M, Smallbone AJ, Roskilly AP (2016) An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation. Desalination 397:174–184

    Article  Google Scholar 

  94. Loutatidou S, Arafat HA (2015) Techno-economic analysis of MED and RO desalination powered by low-enthalpy geothermal energy. Desalination 365:277–292. doi:10.1016/j.desal.2015.03.010

    Article  CAS  Google Scholar 

  95. Dodgson JS, Spackman M, Pearman A, Phillips LD (2009) Multi-Criteria analysis: a manual. Communities and Local Government Publications, West Yorkshire

    Google Scholar 

  96. Amer M, Daim TU (2011) Selection of renewable energy technologies for a developing county: a case of Pakistan. Energy Sustain Dev 15:420–435

    Article  Google Scholar 

  97. Voces R, Diaz-Balteiro L, Romero C (2012) Characterization and explanation of the sustainability of the European wood manufacturing industries: a quantitative approach. Expert Syst Appl 39(7):6618–6627

    Article  Google Scholar 

  98. Molinos-Senante M, Gómez T, Garrido-Baserba M, Caballero R, Sala-Garrido R (2014) Assessing the sustainability of small wastewater treatment systems: a composite indicator approach. Sci Total Environ 497–498:607–617

    Article  Google Scholar 

  99. Plakas KV, Georgiadis AA, Karabelas AJ (2016) Sustainability assessment of tertiary wastewater treatment technologies: a multi-criteria analysis. Water Sci Technol 73(7):1532–1540

    Article  CAS  Google Scholar 

  100. Jin Zhou, Chang VWC, Fane AG (2014) Life Cycle Assessment for desalination: A review on methodology feasibility and reliability. Water Res 61:210–223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Karabelas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Karabelas, A.J., Koutsou, C.P., Sioutopoulos, D.C., Plakas, K.V., Kostoglou, M. (2017). Desalination by Reverse Osmosis. In: Figoli, A., Criscuoli, A. (eds) Sustainable Membrane Technology for Water and Wastewater Treatment. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5623-9_6

Download citation

Publish with us

Policies and ethics