Inorganic Membranes in Water and Wastewater Treatment

  • Liang-Hsun Chen
  • Yi-Rui Chen
  • Che-Yu Chou
  • Chien-Hua Chen
  • Chia-Chieh Ko
  • Kuo-Lun TungEmail author
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Worldwide water scarcity and an increase in population growth have become unprecedented urgent global issues. There is a pressing need to develop robust membrane technologies for water and wastewater treatment at lower cost. Inorganic membranes feature superior chemical, thermal, and mechanical robustness as well as reusability. They are ideally suited for harsh environments in many wastewater treatment applications. Common fabrication methods of inorganic membranes include slip casting, tape casting, pressing, extrusion, dip coating, sol-gel process, atomic layer deposition, and thermal spray. For the fabrication of inorganic hollow fiber membranes, the combination of phase inversion and sintering is used. The excellent packing density and high specific area of inorganic hollow fiber membranes can offer great treatment capacities for large-scale applications. Commercial inorganic membranes have been applied in a wide variety of industrial applications and to compete with polymeric counterparts on a whole-life cost basis. Recent progress in inorganic membrane science and technologies have shown great potential in many water treatment applications, including potable water production, desalination, wastewater treatment, as well as juice clarification and concentration.


Inorganic membranes Pressure-driven membrane processes Membrane distillation Preparation of inorganic membranes Thermal spray Inorganic hollow fiber membranes Potable water production Desalination Wastewater treatment Juice clarification and concentration 


  1. 1.
  2. 2.
    Benito JM, Sánchez MJ, Pena P, Rodríguez MA (2007) Development of a new high porosity ceramic membrane for the treatment of bilge water. Desalination 214(1):91–101. doi: 10.1016/j.desal.2006.10.020
  3. 3.
    Faibish RS, Cohen Y (2001) Fouling-resistant ceramic-supported polymer membranes for ultrafiltration of oil-in-water microemulsions. J Membr Sci 185(2):129–143. doi: 10.1016/S0376-7388(00)00595-0
  4. 4.
    Lamminen MO, Walker HW, Weavers LK (2004) Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. J Membr Sci 237(1–2):213–223. doi: 10.1016/j.memsci.2004.02.031 CrossRefGoogle Scholar
  5. 5.
    Chen D, Weavers LK, Walker HW (2006) Ultrasonic control of ceramic membrane fouling by particles: Effect of ultrasonic factors. Ultrason Sonochem 13(5):379–387. doi: 10.1016/j.ultsonch.2005.07.004 CrossRefGoogle Scholar
  6. 6.
    Popovic S, Djuric M, Milanovic S, Tekic MN, Lukic N (2010) Application of an ultrasound field in chemical cleaning of ceramic tubular membrane fouled with whey proteins. J Food Eng 101(3):296–302. doi: 10.1016/j.jfoodeng.2010.07.012 CrossRefGoogle Scholar
  7. 7.
    Alventosa-deLara E, Barredo-Damas S, Alcaina-Miranda MI, Iborra-Clar MI (2014) Study and optimization of the ultrasound-enhanced cleaning of an ultrafiltration ceramic membrane through a combined experimental-statistical approach. Ultrason Sonochem 21(3):1222–1234. doi: 10.1016/j.ultsonch.2013.10.022 CrossRefGoogle Scholar
  8. 8.
    Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog 22(1):46–56CrossRefGoogle Scholar
  9. 9.
    Lee A, Elam JW, Darling SB (2016) Membrane materials for water purification: design, development, and application. Environ Sci: Water Res Technol 2(1):17–42Google Scholar
  10. 10.
    Alkhudhiri A, Darwish N, Hilal N (2012) Membrane distillation: a comprehensive review. Desalination 287:2–18. doi: 10.1016/j.desal.2011.08.027
  11. 11.
    Camacho LM, Dumée L, Zhang J, J-d Li, Duke M, Gomez J, Gray S (2013) Advances in membrane distillation for water desalination and purification applications. Water 5(1):94–196CrossRefGoogle Scholar
  12. 12.
    Larbot A, Gazagnes L, Krajewski S, Bukowska M, Kujawski W (2004) Water desalination using ceramic membrane distillation. Desalination 168:367–372CrossRefGoogle Scholar
  13. 13.
    Cerneaux S, Strużyńska I, Kujawski WM, Persin M, Larbot A (2009) Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes. J Membr Sci 337(1):55–60CrossRefGoogle Scholar
  14. 14.
    Zolotarev P, Ugrozov V, Volkina I, Nikulin V (1994) Treatment of waste water for removing heavy metals by membrane distillation. J Hazard Mater 37(1):77–82CrossRefGoogle Scholar
  15. 15.
    Calabro V, Jiao BL, Drioli E (1994) Theoretical and experimental study on membrane distillation in the concentration of orange juice. Ind Eng Chem Res 33(7):1803–1808CrossRefGoogle Scholar
  16. 16.
    Gunko S, Verbych S, Bryk M, Hilal N (2006) Concentration of apple juice using direct contact membrane distillation. Desalination 190(1–3):117–124CrossRefGoogle Scholar
  17. 17.
    Dumée L, Smart S, Duke M, Gray S (2015) Next generation membranes for membrane distillation and future prospects. Woodhead Publishing, UKGoogle Scholar
  18. 18.
    Picard C, Larbot A, Tronel-Peyroz E, Berjoan R (2004) Characterisation of hydrophilic ceramic membranes modified by fluoroalkylsilanes into hydrophobic membranes. Solid State Sci 6(6):605–612. doi: 10.1016/j.solidstatesciences.2004.03.017
  19. 19.
    Fang H, Gao J, Wang H, Chen C (2012) Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process. J Membr Sci 403:41–46CrossRefGoogle Scholar
  20. 20.
    Gazagnes L, Cerneaux S, Persin M, Prouzet E, Larbot A (2007) Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes. Desalination 217(1–3):260–266. doi: 10.1016/j.desal.2007.01.017 CrossRefGoogle Scholar
  21. 21.
    Alklaibi A, Lior N (2005) Membrane-distillation desalination: status and potential. Desalination 171(2):111–131CrossRefGoogle Scholar
  22. 22.
    CFM Systems® Our core technology—The ceramic flat membrane.
  23. 23.
    Heidenreich S (2011) Ceramic membranes: high filtration area packing densities improve membrane performance. Filtration + Separation 48(3):25–27. doi: 10.1016/S0015-1882(11)70118-5
  24. 24.
    Li K (2007) Ceramic membranes for separation and reaction. Wiley, USAGoogle Scholar
  25. 25.
    Lindqvist K, Lidén E (1997) Preparation of alumina membranes by tape casting and dip coating. J Eur Ceram Soc 17(2):359–366. doi: 10.1016/S0955-2219(96)00107-0
  26. 26.
    Masmoudi S, Larbot A, Feki HE, Amar RB (2007) Elaboration and characterisation of apatite based mineral supports for microfiltration and ultrafiltration membranes. Ceram Int 33(3):337–344. doi: 10.1016/j.ceramint.2005.10.001
  27. 27.
    Lorente-Ayza M-M, Mestre S, Menéndez M, Sánchez E (2015) Comparison of extruded and pressed low cost ceramic supports for microfiltration membranes. J Eur Ceram Soc 35(13):3681–3691CrossRefGoogle Scholar
  28. 28.
    Saffaj N, Persin M, Younssi SA, Albizane A, Bouhria M, Loukili H, Dach H, Larbot A (2005) Removal of salts and dyes by low ZnAl2O4–TiO2 ultrafiltration membrane deposited on support made from raw clay. Separation and Purification Technology 47 (1–2):36–42. doi: 10.1016/j.seppur.2005.05.012
  29. 29.
    Saffaj N, Persin M, Younsi SA, Albizane A, Cretin M, Larbot A (2006) Elaboration and characterization of microfiltration and ultrafiltration membranes deposited on raw support prepared from natural Moroccan clay: application to filtration of solution containing dyes and salts. Appl Clay Sci 31 (1–2):110–119. doi: 10.1016/j.clay.2005.07.002
  30. 30.
    Vinoth Kumar R, Kumar Ghoshal A, Pugazhenthi G (2015) Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment. Journal of Membrane Science 490:92–102. doi: 10.1016/j.memsci.2015.04.066
  31. 31.
    Foughali L, Barama S, Harabi A, Bouzerara F, Guechi A, Boudaira B (2016) Effect of sodium phosphate addition on mechanical properties of porous Sigue quartz sand. Desalin Water Treat 57(12):5286–5291. doi: 10.1080/19443994.2015.1021100 CrossRefGoogle Scholar
  32. 32.
    Almandoz MC, Marchese J, Prádanos P, Palacio L, Hernández A (2004) Preparation and characterization of non-supported microfiltration membranes from aluminosilicates. J Membr Sci 241(1):95–103. doi: 10.1016/j.memsci.2004.03.045
  33. 33.
    Bouzerara F, Harabi A, Achour S, Larbot A (2006) Porous ceramic supports for membranes prepared from kaolin and doloma mixtures. J Eur Ceramic Society 26(9):1663–1671. doi: 10.1016/j.jeurceramsoc.2005.03.244
  34. 34.
    Harabi A, Zenikheri F, Boudaira B, Bouzerara F, Guechi A, Foughali L (2014) A new and economic approach to fabricate resistant porous membrane supports using kaolin and CaCO3. J Eur Ceram Soc 34(5):1329–1340. doi: 10.1016/j.jeurceramsoc.2013.11.007
  35. 35.
    Dong Y, Liu X, Ma Q, Meng G (2006) Preparation of cordierite-based porous ceramic micro-filtration membranes using waste fly ash as the main raw materials. J Membr Sci 285(1–2):173–181. doi: 10.1016/j.memsci.2006.08.032
  36. 36.
    Jedidi I, Saïdi S, Khemakhem S, Larbot A, Elloumi-Ammar N, Fourati A, Charfi A, Salah AB, Amar RB (2009) Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment. J Hazard Mater 172(1):152–158. doi: 10.1016/j.jhazmat.2009.06.151
  37. 37.
    Fang J, Qin G, Wei W, Zhao X (2011) Preparation and characterization of tubular supported ceramic microfiltration membranes from fly ash. Sep Purif Technol 80(3):585–591. doi: 10.1016/j.seppur.2011.06.014
  38. 38.
    Tiller FM, TSAI CD (1986) Theory of filtration of ceramics: I, slip casting. J Am Ceram Soc 69(12):882–887Google Scholar
  39. 39.
    Benito JM, Conesa A, Rubio F, Rodríguez MA (2005) Preparation and characterization of tubular ceramic membranes for treatment of oil emulsions. J Eur Ceram Soc 25(11):1895–1903. doi: 10.1016/j.jeurceramsoc.2004.06.016 CrossRefGoogle Scholar
  40. 40.
    Falamaki C, Beyhaghi M (2009) Slip casting process for the manufacture of tubular alumina microfiltration membranes. Mat Sci-Pol 27(2):427–441Google Scholar
  41. 41.
    Bouzerara F, Boulanacer S, Harabi A (2015) Shaping of microfiltration (MF) ZrO2 membranes using a centrifugal casting method. Ceram Int 41(3, Part B):5159–5163. doi: 10.1016/j.ceramint.2014.11.141
  42. 42.
    Das N, Bandyopadhyay S, Chattopadhyay D, Maiti HS (1996) Tape-cast ceramic membranes for microfiltration application. J Mat Sci 31(19):5221–5225CrossRefGoogle Scholar
  43. 43.
    Das N, Maiti HS (1998) Formatation of pore structure in tape-cast alumina membranes–effects of binder content and firing temperature. J Membr Sci 140(2):205–212CrossRefGoogle Scholar
  44. 44.
    Liu W, Canfield N (2012) Development of thin porous metal sheet as micro-filtration membrane and inorganic membrane support. J Membr Sci 409:113–126CrossRefGoogle Scholar
  45. 45.
    Del Colle R, Fortulan CA, Fontes SR (2011) Manufacture and characterization of ultra and microfiltration ceramic membranes by isostatic pressing. Ceram Int 37(4):1161–1168. doi: 10.1016/j.ceramint.2010.11.039 CrossRefGoogle Scholar
  46. 46.
  47. 47.
    Isobe T, Kameshima Y, Nakajima A, Okada K, Hotta Y (2006) Extrusion method using nylon 66 fibers for the preparation of porous alumina ceramics with oriented pores. J Eur Ceram Soc 26(12):2213–2217CrossRefGoogle Scholar
  48. 48.
    Lee S-H, Chung K-C, Shin M-C, Dong J-I, Lee H-S, Auh KH (2002) Preparation of ceramic membrane and application to the crossflow microfiltration of soluble waste oil. Mater Lett 52(4–5):266–271. doi: 10.1016/S0167-577X(01)00405-0 CrossRefGoogle Scholar
  49. 49.
    Dong Y, Feng X, Dong D, Wang S, Yang J, Gao J, Liu X, Meng G (2007) Elaboration and chemical corrosion resistance of tubular macro-porous cordierite ceramic membrane supports. J Membr Sci 304(1–2):65–75. doi: 10.1016/j.memsci.2007.06.058 CrossRefGoogle Scholar
  50. 50.
    Majouli A, Tahiri S, Alami Younssi S, Loukili H, Albizane A (2012) Elaboration of new tubular ceramic membrane from local Moroccan Perlite for microfiltration process. Application to treatment of industrial wastewaters. Ceram Int 38(5):4295–4303. doi: 10.1016/j.ceramint.2012.02.010 CrossRefGoogle Scholar
  51. 51.
    Gu Y, Meng G (1999) A model for ceramic membrane formation by dip-coating. J Eur Ceram Soc 19(11):1961–1966CrossRefGoogle Scholar
  52. 52.
    Soria R (1995) Overview on industrial membranes. Catal Today 25(3):285–290CrossRefGoogle Scholar
  53. 53.
    Leenaars A, Keizer K, Burggraaf A (1984) The preparation and characterization of alumina membranes with ultra-fine pores. J Mat Sci 19(4):1077–1088CrossRefGoogle Scholar
  54. 54.
    Klein L, Gallagher D (1988) Pore structures of sol-gel silica membranes. J Membr Sci 39(3):213–220CrossRefGoogle Scholar
  55. 55.
    Larbot A, Julbe A, Guizard C, Cot L (1989) Silica membranes by the sol-gel process. J Membr Sci 44(2–3):289–303CrossRefGoogle Scholar
  56. 56.
    Anderson MA, Gieselmann MJ, Xu Q (1988) Titania and alumina ceramic membranes. J Membr Sci 39(3):243–258CrossRefGoogle Scholar
  57. 57.
    Moosemiller M, Hill C Jr, Anderson MA (1989) Physicochemical properties of supported γ-Al2O3 and TiO2 ceramic membranes. Sep Sci Technol 24(9–10):641–657CrossRefGoogle Scholar
  58. 58.
    Alem A, Sarpoolaky H, Keshmiri M (2009) Sol–gel preparation of titania multilayer membrane for photocatalytic applications. Ceram Int 35(5):1837–1843CrossRefGoogle Scholar
  59. 59.
    Agoudjil N, Kermadi S, Larbot A (2008) Synthesis of inorganic membrane by sol–gel process. Desalination 223(1):417–424CrossRefGoogle Scholar
  60. 60.
    Das N, Maiti HS (2009) Ceramic membrane by tape casting and sol–gel coating for microfiltration and ultrafiltration application. J Phys Chem Solids 70(11):1395–1400. doi: 10.1016/j.jpcs.2009.08.016 CrossRefGoogle Scholar
  61. 61.
    George SM (2009) Atomic layer deposition: an overview. Chem Rev 110(1):111–131CrossRefGoogle Scholar
  62. 62.
    Cameron M, Gartland I, Smith J, Diaz S, George S (2000) Atomic layer deposition of SiO2 and TiO2 in alumina tubular membranes: pore reduction and effect of surface species on gas transport. Langmuir 16(19):7435–7444CrossRefGoogle Scholar
  63. 63.
    Li F, Yang Y, Fan Y, Xing W, Wang Y (2012) Modification of ceramic membranes for pore structure tailoring: the atomic layer deposition route. J Membr Sci 397:17–23CrossRefGoogle Scholar
  64. 64.
    Palmstrom AF, Santra PK, Bent SF (2015) Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties. Nanoscale 7(29):12266–12283CrossRefGoogle Scholar
  65. 65.
    Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37(9):R86CrossRefGoogle Scholar
  66. 66.
    Lin Y-F, Tung K-L, Tzeng Y-S, Chen J-H, Chang K-S (2012) Rapid atmospheric plasma spray coating preparation and photocatalytic activity of macroporous titania nanocrystalline membranes. J Membr Sci 389:83–90CrossRefGoogle Scholar
  67. 67.
    Ramakrishnan G, Dwivedi G, Sampath S, Orlov A (2015) Development and optimization of thermal sprayed ceramic microfiltration membranes. J Membr Sci 489:106–111CrossRefGoogle Scholar
  68. 68.
    Tung K-L, Hsiung C-C, Ling T-C, Chang K-S, Wu T-T, Li Y-L, Kang C-H, Chen W-Y, Nanda D (2009) Preparation and characterization of aluminum oxide cermet microfiltration membrane using atmospheric plasma spraying. Desalination 245(1):408–421CrossRefGoogle Scholar
  69. 69.
    Madaeni S, Aalami-Aleagha M, Daraei P (2008) Preparation and characterization of metallic membrane using wire arc spraying. J Membr Sci 320(1):541–548CrossRefGoogle Scholar
  70. 70.
    Xiaoyao Tan SL, Li K (2001) Preparation and characterization of inorganic hollow fiber membranes. J Membr Sci 188(87–95):87–95Google Scholar
  71. 71.
    Liu S, Li K, Hughes R (2003) Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method. Ceram Int 29(8):875–881. doi: 10.1016/s0272-8842(03)00030-0 CrossRefGoogle Scholar
  72. 72.
    Kingsbury BFK, Li K (2009) A morphological study of ceramic hollow fibre membranes. J Membr Sci 328(1–2):134–140. doi: 10.1016/j.memsci.2008.11.050 CrossRefGoogle Scholar
  73. 73.
    Kingsbury BFK, Wu Z, Li K (2010) A morphological study of ceramic hollow fibre membranes: a perspective on multifunctional catalytic membrane reactors. Catal Today 156(3–4):306–315. doi: 10.1016/j.cattod.2010.02.039 CrossRefGoogle Scholar
  74. 74.
    Pan Y, Wang B, Lai Z (2012) Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability. J Membr Sci 421:292–298CrossRefGoogle Scholar
  75. 75.
    Wu Z, Faiz R, Li T, Kingsbury BF, Li K (2013) A controlled sintering process for more permeable ceramic hollow fibre membranes. J Membr Sci 446:286–293CrossRefGoogle Scholar
  76. 76.
    Steenkamp G, Keizer K, Neomagus H, Krieg H (2002) Copper (II) removal from polluted water with alumina/chitosan composite membranes. J Membr Sci 197(1):147–156CrossRefGoogle Scholar
  77. 77.
    Qiu M, Feng J, Fan Y, Xu N (2009) Pore evolution model of ceramic membrane during constrained sintering. J Mat Sci 44(3):689–699CrossRefGoogle Scholar
  78. 78.
    Kim HJ, Jang CS, Kim BH, Seo YH (2016) Self-formation of microporous polysulfone hollow fiber using a single nozzle spinneret and reduction of phase-inversion speed. Jpn J Appl Phys 55(6S1):06GH06Google Scholar
  79. 79.
    Shi Z, Zhang Y, Cai C, Zhang C, Gu X (2015) Preparation and characterization of α-Al2O3 hollow fiber membranes with four-channel configuration. Ceram Int 41(1):1333–1339. doi: 10.1016/j.ceramint.2014.09.065 CrossRefGoogle Scholar
  80. 80.
    Lee M, Wu Z, Wang B, Li K (2015) Micro-structured alumina multi-channel capillary tubes and monoliths. J Membr Sci 489:64–72. doi: 10.1016/j.memsci.2015.03.091 CrossRefGoogle Scholar
  81. 81.
    Widjojo N, Chung T-S, Arifin DY, Weber M, Warzelhan V (2010) Elimination of die swell and instability in hollow fiber spinning process of hyperbranched polyethersulfone (HPES) via novel spinneret designs and precise spinning conditions. Chem Eng J 163(1):143–153CrossRefGoogle Scholar
  82. 82.
    Chen YR, Chen LH, Tung KL, Li YL, Chen YS, Hu CC, Chuang CJ (2015) Semianalytical solution for power-law polymer solution flow in a converging annular spinneret. AIChE J 61(10):3489–3499CrossRefGoogle Scholar
  83. 83.
    Lee M, Wu Z, Wang R, Li K (2014) Micro-structured alumina hollow fibre membranes—Potential applications in wastewater treatment. J Membr Sci 461:39–48. doi: 10.1016/j.memsci.2014.02.044 CrossRefGoogle Scholar
  84. 84.
    Ren C, Fang H, Gu J, Winnubst L, Chen C (2015) Preparation and characterization of hydrophobic alumina planar membranes for water desalination. J Eur Ceram Soc 35(2):723–730. doi: 10.1016/j.jeurceramsoc.2014.07.012 CrossRefGoogle Scholar
  85. 85.
    Chen Y-R, Chen L-H, Chang K-S, Chen T-H, Lin Y-F, Tung K-L (2016) Structural characteristics and transport behavior of triptycene-based PIMs membranes: a combination study using ab initio calculation and molecular simulations. J Membr Sci 514:114–124. doi: 10.1016/j.memsci.2016.04.063 CrossRefGoogle Scholar
  86. 86.
    Li T, Lu X, Wang B, Wu Z, Li K, Brett DJ, Shearing PR (2017) X-ray tomography-assisted study of a phase inversion process in ceramic hollow fiber systems—towards practical structural design. J Membr Sci 528:24–33 Google Scholar
  87. 87.
    Zhang X, Lin B, Ling Y, Dong Y, Fang D, Meng G, Liu X (2010) Highly permeable porous YSZ hollow fiber membrane prepared using ethanol as external coagulant. J Alloy Compd 494(1–2):366–371. doi: 10.1016/j.jallcom.2010.01.048 Google Scholar
  88. 88.
    Han L-F, Xu Z-L, Cao Y, Wei Y-M, Xu H-T (2011) Preparation, characterization and permeation property of Al2O3, Al2O3–SiO2 and Al2O3–kaolin hollow fiber membranes. J Membr Sci 372(1–2):154–164. doi: 10.1016/j.memsci.2011.01.065 CrossRefGoogle Scholar
  89. 89.
    Fang H, Gao JF, Wang HT, Chen CS (2012) Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process. J Membr Sci 403–404:41–46. doi: 10.1016/j.memsci.2012.02.011 CrossRefGoogle Scholar
  90. 90.
    Fung Y-LE, Wang H (2014) Nickel aluminate spinel reinforced ceramic hollow fibre membrane. J Membr Sci 450:418–424. doi: 10.1016/j.memsci.2013.09.036 CrossRefGoogle Scholar
  91. 91.
    Zhang J-W, Fang H, Wang J-W, Hao L-Y, Xu X, Chen C-S (2014) Preparation and characterization of silicon nitride hollow fiber membranes for seawater desalination. J Membr Sci 450:197–206. doi: 10.1016/j.memsci.2013.08.042 CrossRefGoogle Scholar
  92. 92.
    de Wit P, Kappert EJ, Lohaus T, Wessling M, Nijmeijer A, Benes NE (2015) Highly permeable and mechanically robust silicon carbide hollow fiber membranes. J Membr Sci 475:480–487. doi: 10.1016/j.memsci.2014.10.045 CrossRefGoogle Scholar
  93. 93.
    Ko C-C, Chen C-H, Chen Y-R, Wu Y-H, Lu S-C, Hu F-C, Li C-L, Tung K-L* (2017) Increasing the performance of a vacuum membrane distillation using micro-structured hydrophobic aluminum hollow fiber membranes. Appl Sci 178746 Google Scholar
  94. 94.
    De Jonghe LC, Rahaman MN (2003) 4.1 sintering of ceramics. Handb Adv Ceram: Mat, Appl, Process Prop 2:187Google Scholar
  95. 95.
    Wu Z, Faiz R, Li T, Kingsbury BFK, Li K (2013) A controlled sintering process for more permeable ceramic hollow fibre membranes. J Membr Sci 446:286–293. doi: 10.1016/j.memsci.2013.05.040 CrossRefGoogle Scholar
  96. 96.
    Kingery WD, Berg M (1955) Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self-diffusion. J Appl Phys 26(10):1205–1212. doi: 10.1063/1.1721874 CrossRefGoogle Scholar
  97. 97.
    Coble RL (1961) Sintering crystalline solids. I. intermediate and final state diffusion models. J Appl Phys 32(5):787–792. doi: 10.1063/1.1736107 CrossRefGoogle Scholar
  98. 98.
    Coble RL (1961) Sintering crystalline solids. ii. experimental test of diffusion models in powder compacts. J Appl Phys 32(5):793–799. doi: 10.1063/1.1736108 CrossRefGoogle Scholar
  99. 99.
    Johnson DL (1969) New method of obtaining volume, grain-boundary, and surface diffusion coefficients from sintering data. J Appl Phys 40(1):192–200. doi: 10.1063/1.1657030 CrossRefGoogle Scholar
  100. 100.
    Liu S, Li K (2003) Preparation TiO2/Al2O3 composite hollow fibre membranes. J Membr Sci 218(1–2):269–277. doi: 10.1016/s0376-7388(03)00184-4 CrossRefGoogle Scholar
  101. 101.
    Koonaphapdeelert S, Li K (2007) Preparation and characterization of hydrophobic ceramic hollow fibre membrane. J Membr Sci 291(1–2):70–76. doi: 10.1016/j.memsci.2006.12.039 CrossRefGoogle Scholar
  102. 102.
    Lee M, Wu Z, Wang R, Li K (2015) Micro-structured alumina hollow fibre membranes—potential applications in wastewater treatment. J Membr Sci 461:39–48CrossRefGoogle Scholar
  103. 103.
    Wei CC, Li K* (2008) Yttria-stabilized zirconia (YSZ)-based hollow fiber solid oxide fuel cells. Ind Eng Chem Res 47:1506–1512Google Scholar
  104. 104.
    Zhang X, Hu J, Chang Q, Wang Y, J-e Zhou, Zhao T, Jiang Y, Liu X (2015) Influences of internal coagulant composition on microstructure and properties of porous YSZ hollow fibre membranes for water treatment. Sep Purif Technol 147:337–345. doi: 10.1016/j.seppur.2015.01.027 CrossRefGoogle Scholar
  105. 105.
    Zydorczak B, Wu Z, Li K (2009) Fabrication of ultrathin La0.6Sr0.4Co0.2Fe0.8O3–δ hollow fibre membranes for oxygen permeation. Chem Eng Sci 64(21):4383–4388. doi: 10.1016/j.ces.2009.07.007 CrossRefGoogle Scholar
  106. 106.
    Wang Z, Yang N, Meng B, Tan X*, Li K (2009) Preparation and oxygen permeation properties of highly asymmetric La0.6Sr0.4Co0.2Fe0.8O3-r perovskite hollow-fiber membranes. Ind Eng Chem Res 48:510–516Google Scholar
  107. 107.
    Tan X, Wang Z, Li K (2010) Effects of Sintering on the Properties of La0.6Sr0.4Co0.2Fe0.8O3-δ Perovskite Hollow Fiber Membranes. Ind Eng Chem Res 49:2895–2901)Google Scholar
  108. 108.
    Stobierski L, Gubernat A (2003) Sintering of silicon carbide II. Effect of boron. Ceram Int 29(4):355–361. doi: 10.1016/s0272-8842(02)00144-x CrossRefGoogle Scholar
  109. 109.
    Fukushima M, Zhou Y, Miyazaki H, Y-i Yoshizawa, Hirao K, Iwamoto Y, Yamazaki S, Nagano T (2006) Microstructural characterization of porous silicon carbide membrane support with and without alumina additive. J Am Ceram Soc 89(5):1523–1529. doi: 10.1111/j.1551-2916.2006.00931.x CrossRefGoogle Scholar
  110. 110.
    Fukushima M, Zhou Y, Y-i Yoshizawa (2009) Fabrication and microstructural characterization of porous SiC membrane supports with Al2O3–Y2O3 additives. J Membr Sci 339(1–2):78–84. doi: 10.1016/j.memsci.2009.04.033 CrossRefGoogle Scholar
  111. 111.
    Luyjew K, Tonanon N, Pavarajarn V (2008) Mesoporous silicon nitride synthesis via the carbothermal reduction and nitridation of carbonized silica/RF gel composite. J Am Ceram Soc 91(4):1365–1368CrossRefGoogle Scholar
  112. 112.
    Hu H-L, Zeng Y-P, Xia Y-F, Yao D-X, Zuo K-H, Günster J, Heinrich JG (2014) Rapid fabrication of porous Si3 N4/SiC ceramics via nitridation of silicon powder with ZrO2 as catalyst. Ceram Int 40(5):7579–7582CrossRefGoogle Scholar
  113. 113.
    Kusano D, Adachi S, Tanabe G, Hyuga H, Zhou Y, Hirao K (2012) Effects of impurity oxygen content in raw si powder on thermal and mechanical properties of sintered reaction-bonded silicon nitrides. Int J Appl Ceram Technol 9(2):229–238CrossRefGoogle Scholar
  114. 114.
    Zhang W, Wang H, Jin Z (2005) Gel casting and properties of porous silicon carbide/silicon nitride composite ceramics. Mater Lett 59(2–3):250–256. doi: 10.1016/j.matlet.2004.07.059 CrossRefGoogle Scholar
  115. 115.
    Guo W-M, Wu L-X, Ma T, You Y, Lin H-T (2016) Rapid fabrication of Si3 N4 ceramics by reaction-bonding and pressureless sintering. J Eur Ceram Soc 36(16):3919–3924CrossRefGoogle Scholar
  116. 116.
    Sondhi R, Bhave R, Jung G (2003) Applications and benefits of ceramic membranes. Membr Technol 11:5–8CrossRefGoogle Scholar
  117. 117.
    Nanostone Water Ceramic Membranes.
  118. 118.
  119. 119.
  120. 120.
    Veolia Water Treatment Technologies About Ceramem® Ceramic Membrane Technology.
  121. 121.
    Inopor® The cutting edge of nano-filtration.
  122. 122.
    InoCep—Hydrasyst InoCep® Ceramic Hollow Fiber Membranes.
  123. 123.
    Bottino A, Capannelli C, Del Borghi A, Colombino M, Conio O (2001) Water treatment for drinking purpose: ceramic microfiltration application. Desalination 141(1):75–79CrossRefGoogle Scholar
  124. 124.
    Mallada R, Menéndez M (2008) Inorganic membranes: synthesis, characterization and applications, vol 13. Elsevier. NetherlandsGoogle Scholar
  125. 125.
    Oh H, Takizawa S, Ohgaki S, Katayama H, Oguma K, Yu M (2007) Removal of organics and viruses using hybrid ceramic MF system without draining PAC. Desalination 202(1–3):191–198CrossRefGoogle Scholar
  126. 126.
    Zaspalis V, Pagana A, Sklari S (2007) Arsenic removal from contaminated water by iron oxide sorbents and porous ceramic membranes. Desalination 217(1–3):167–180CrossRefGoogle Scholar
  127. 127.
    Pagana A, Sklari S, Kikkinides E, Zaspalis V (2008) Microporous ceramic membrane technology for the removal of arsenic and chromium ions from contaminated water. Microporous Mesoporous Mater 110(1):150–156CrossRefGoogle Scholar
  128. 128.
    Harman B, Koseoglu H, Yigit N, Sayilgan E, Beyhan M, Kitis M (2010) The removal of disinfection by-product precursors from water with ceramic membranes. Water Sci Technol 62(3):547–555CrossRefGoogle Scholar
  129. 129.
    Hendren ZD, Brant J, Wiesner MR (2009) Surface modification of nanostructured ceramic membranes for direct contact membrane distillation. J Membr Sci 331(1–2):1–10. doi: 10.1016/j.memsci.2008.11.038 CrossRefGoogle Scholar
  130. 130.
    Krajewski S, Kujawski W, Bukowska M, Picard C, Larbot A (2006) Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions. J Membr Sci 281(1–2):253–259. doi: 10.1016/j.memsci.2006.03.039 CrossRefGoogle Scholar
  131. 131.
    Zhang J-W, Fang H, Hao L-Y, Xu X, Chen C-S (2012) Preparation of silicon nitride hollow fibre membrane for desalination. Mater Lett 68:457–459. doi: 10.1016/j.matlet.2011.11.041 CrossRefGoogle Scholar
  132. 132.
    Khemakhem M, Khemakhem S, Ben Amar R (2013) Emulsion separation using hydrophobic grafted ceramic membranes by. Colloids Surf, A 436:402–407. doi: 10.1016/j.colsurfa.2013.05.073 CrossRefGoogle Scholar
  133. 133.
    Kujawa J, Cerneaux S, Koter S, Kujawski W (2014) Highly efficient hydrophobic titania ceramic membranes for water desalination. ACS Appl Mater Interfaces 6(16):14223–14230. doi: 10.1021/am5035297 CrossRefGoogle Scholar
  134. 134.
    Garofalo A, Donato L, Drioli E, Criscuoli A, Carnevale MC, Alharbi O, Aljlil SA, Algieri C (2014) Supported MFI zeolite membranes by cross flow filtration for water treatment. Sep Purif Technol 137:28–35. doi: 10.1016/j.seppur.2014.09.028 CrossRefGoogle Scholar
  135. 135.
    Wang J-W, Li L, Zhang J-W, Xu X, Chen C-S (2016) β-Sialon ceramic hollow fiber membranes with high strength and low thermal conductivity for membrane distillation. J Eur Ceram Soc 36(1):59–65. doi: 10.1016/j.jeurceramsoc.2015.09.027 CrossRefGoogle Scholar
  136. 136.
    Gu J, Ren C, Zong X, Chen C, Winnubst L (2016) Preparation of alumina membranes comprising a thin separation layer and a support with straight open pores for water desalination. Ceram Int 42(10):12427–12434. doi: 10.1016/j.ceramint.2016.04.183 CrossRefGoogle Scholar
  137. 137.
    Wang J-W, Li L, Gu J-Q, Yang M-Y, Xu X, Chen C-S, Wang H-T, Agathopoulos S (2016) Highly stable hydrophobic SiNCO nanoparticle-modified silicon nitride membrane for zero-discharge water desalination. AIChE J. doi: 10.1002/aic.15500 Google Scholar
  138. 138.
    Huang C-Y, Ko C-C, Chen L-H, Huang C-T, Tung K-L, Liao Y-C (2016) A simple coating method to prepare superhydrophobic layers on ceramic alumina for vacuum membrane distillation. Sep Purif Technol. doi: 10.1016/j.seppur.2016.12.037 Google Scholar
  139. 139.
    Ko C-C, Chen C-H, Chen Y-R, Wu Y-H, Lu S-C, Hu F-C, Li C-L, Tung K-L (2017) Increasing the performance of vacuum membrane distillation using micro-structured hydrophobic aluminum hollow fiber membranes. Appl Sci 7(4):357CrossRefGoogle Scholar
  140. 140.
    Marcucci M, Ciabatti I, Matteucci A, Vernaglione G (2003) Membrane technologies applied to textile wastewater treatment. Ann Ny Acad Sci 984:53–64CrossRefGoogle Scholar
  141. 141.
    Rozzi A, Antonelli M, Arcari M (1999) Membrane treatment of secondary textile effluents for direct reuse. Water Sci Technol 40(4–5):409–416. doi: 10.1016/S0273-1223(99)00524-7 Google Scholar
  142. 142.
    Porter JJ, Zhuang SZ (1996) Microfiltration of sodium nitrate and Direct Red 2 dye using asymmetric titanium dioxide membranes on porous ceramic tubes. J Membrane Sci 110(1):119–132. doi: 10.1016/0376-7388(95)00242-1 CrossRefGoogle Scholar
  143. 143.
    Bottino A, Capannelli G, Tocchi G, Marcucci M, Ciardelli G (2000) Membrane processes for textile wastewater treatment aimed at its re-use, pp 521Google Scholar
  144. 144.
    Chen P, Ma X, Zhong Z, Zhang F, Xing W, Fan Y (2017) Performance of ceramic nanofiltration membrane for desalination of dye solutions containing NaCl and Na2 SO4. Desalination 404:102–111CrossRefGoogle Scholar
  145. 145.
    Yang C, Zhang G, Xu N, Shi J (1998) Preparation and application in oil–water separation of ZrO2/α-Al2O3 MF membrane. J Membr Sci 142(2):235–243. doi: 10.1016/S0376-7388(97)00336-0 CrossRefGoogle Scholar
  146. 146.
    Mohammadi T, Pak A, Karbassian M, Golshan M (2004) Effect of operating conditions on microfiltration of an oil-water emulsion by a kaolin membrane. Desalination 168:201–205CrossRefGoogle Scholar
  147. 147.
    Cui J, Zhang X, Liu H, Liu S, Yeung KL (2008) Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water. J Membr Sci 325(1):420–426. doi: 10.1016/j.memsci.2008.08.015 CrossRefGoogle Scholar
  148. 148.
    Nishihama S, Tsutsumi Y, Yoshizuka K (2013) Separation of tetramethyl ammonium hydroxide using an MFI-type zeolite-coated membrane. Sep Purif Technol 120:129–133. doi: 10.1016/j.seppur.2013.09.040 CrossRefGoogle Scholar
  149. 149.
    Jegatheesan V, Phong DD, Shu L, Ben Aim R (2009) Performance of ceramic micro- and ultrafiltration membranes treating limed and partially clarified sugar cane juice. J Membr Sci 327(1–2):69–77. doi: 10.1016/j.memsci.2008.11.008 CrossRefGoogle Scholar
  150. 150.
    Wang B-J, Wei T-C, Yu Z-R (2005) Effect of operating temperature on component distribution of West Indian cherry juice in a microfiltration system. LWT—Food Sci Technol 38(6):683–689. doi: 10.1016/j.lwt.2004.09.002 CrossRefGoogle Scholar
  151. 151.
    Nandi BK, Das B, Uppaluri R, Purkait MK (2009) Microfiltration of mosambi juice using low cost ceramic membrane. J Food Eng 95(4):597–605. doi: 10.1016/j.jfoodeng.2009.06.024 CrossRefGoogle Scholar
  152. 152.
    Nandi B, Das B, Uppaluri R (2012) Clarification of orange juice using ceramic membrane and evaluation of fouling mechanism. J Food Process Eng 35(3):403–423CrossRefGoogle Scholar
  153. 153.
    Gomes FS, Costa PA, Campos MB, Tonon RV, Couri S, Cabral L (2013) Watermelon juice pretreatment with microfiltration process for obtaining lycopene. Int J Food Sci Technol 48(3):601–608CrossRefGoogle Scholar
  154. 154.
    Hirota Y, Kayama M, Kamiya T, Ito A (2016) Hydrophobic Al2O3 membrane for sucrose concentration via vacuum membrane distillation system. J Chem Eng Jpn 49(10):915–919CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Liang-Hsun Chen
    • 1
  • Yi-Rui Chen
    • 1
  • Che-Yu Chou
    • 1
  • Chien-Hua Chen
    • 1
  • Chia-Chieh Ko
    • 1
  • Kuo-Lun Tung
    • 1
    Email author
  1. 1.Department of Chemical EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations