Sustainable Route in Preparation of Polymeric Membranes

  • A. FigoliEmail author
  • T. Marino
  • F. Galiano
  • S. S. Dorraji
  • E. Di Nicolò
  • T. He
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Polymeric membranes are the most used separation media at industrial level, in biomedical, food, and water treatment fields, thanks to the easy preparation techniques, high flexibility, and low cost. Membrane separation has been recognized as a green sustainable process, the preparation route of polymeric membranes is still based on the use of toxic solvents and fossil-based polymers, which is not yet green and sustainable. Recently, an increasing number of research studies were reported, which referred to the possibility of producing polymeric membranes by using less-toxic solvents and biomaterials. This chapter is an overview of the polymeric membranes applied in desalination, water, and wastewater treatment, including biomaterials and the use of nontoxic solvents in membrane preparation. Finally, a cost analysis of polymeric membrane production comparing toxic and nontoxic solvents and the possibility of solvent recovery is also discussed.


Polymeric membranes Polymeric membrane preparation Green solvents Bio-material Polymeric membranes in water treatment Membrane processes Cost analysis in membrane preparation Polymeric hollow fiber membranes 


  1. 1.
    Lee A, Elam JW, Darling SB (2016) Membrane materials for water purification: design, development, and application. environ. Sci Water Res Technol 2:17–42CrossRefGoogle Scholar
  2. 2.
    World Water Council (WWC), Urban Urgency, Water Caucus Summary, Marseille, France, 2007Google Scholar
  3. 3.
    Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275CrossRefGoogle Scholar
  4. 4.
    Pendergast MTM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4:1946–1971CrossRefGoogle Scholar
  5. 5.
    Figoli A, Simone S, Drioli E (2015) Polymeric membranes. In: Hilal N, Ismail A F, Wright C (eds) Membrane fabrication. Taylor & Francis Group, London, pp 3–43Google Scholar
  6. 6.
    Madaeni SS, Ghaemi N, Rajabi H (2015) Advances in polymeric membranes for water treatment. In Basile A, Cassano A, Rastogi NK (eds) Advances in membrane technologies for water treatment. Woodhead Publishing, Sawston, pp 3–41Google Scholar
  7. 7.
    Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33CrossRefGoogle Scholar
  8. 8.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New YorkGoogle Scholar
  9. 9.
    Hanafia A, Faur C, Deratani A, Guenoun P, Garate H, Quemener D, Pochat-Bohatier C, Bouyer D (2017) Fabrication of novel porous membrane from biobased water-soluble polymer (hydroxypropylcellulose). J Membr Sci 526:212–220CrossRefGoogle Scholar
  10. 10.
    Figoli A, Marino T, Simone S, Di Nicolò E, Li XM, He T, Tornaghi S, Drioli E (2014) Towards non-toxic solvents for membrane preparation: a review. Green Chem 16:4034–4059CrossRefGoogle Scholar
  11. 11.
    Shojaie SS, Krantz WB, Greenberg AR (1994) Dense polymer film and membrane formation via the dry-cast process Part II. model validation and morphological studies. J Membr Sci 94:281–298CrossRefGoogle Scholar
  12. 12.
    Li D, Krantz WB, Greenberg AR, Sani RL (2006) Membrane formation via thermally induced phase separation (TIPS): model development and validation. J Membr Sci 279:50–60CrossRefGoogle Scholar
  13. 13.
    Krishna RKSV, Vijaya B, Naidu K, Subha MCS, Sairam M, Mallikarjuna NN, Aminabahvi TM (2006) Novel carbonhydrate polymeric blend membranes in pervaporation dehydration of acetic acid. Carbonhydrate Polymer 66:345–351CrossRefGoogle Scholar
  14. 14.
    Suzuki F, Kimura H, Shibue T (2000) Formation having a tanning gradient structure of collagen membrane by the pervaporation technique. J Membr Sci 165:169–175CrossRefGoogle Scholar
  15. 15.
    Lin W, Li Q, Zhu T (2012) New chitosan/Konjac glucomannan blending membrane for application in pervaporation dehydration of caprolactam solution. J Ind Eng Chem 18:934–940CrossRefGoogle Scholar
  16. 16.
    Ghaee A, Shariaty-Niassar M, Barzin J, Ismail AF (2013) Chitosan/polyethersulfone composite nanofiltration membrane for industrial wastewater treatment. Int J Nanosci Nanotechnol 9:213–220Google Scholar
  17. 17.
    Raval HD, Rana PS, Maiti S (2015) A novel high-flux, thin-film composite reverse osmosis membrane modified by chitosan for advanced water treatment. RSC Adv 5:6687–6694CrossRefGoogle Scholar
  18. 18.
    Zhang P, Knötig P, Gray S, Duke M (2015) Scale reduction and cleaning techniques during direct contact membrane distillation of seawater reverse osmosis brine. Desalination 374:20–30CrossRefGoogle Scholar
  19. 19.
    Giwa A, Akther N, Dufour V, Hasan SW (2016) A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis process. RSC Adv. 6:8134–8163CrossRefGoogle Scholar
  20. 20.
    Hibbs MR, McGrath LK, Kang S, Adout A, Altman SJ, Elimelech M, Cornelius CJ (2016) Designing a biocidal reverse osmosis membrane coating: synthesis and biofouling properties. Desalination 380:52–59CrossRefGoogle Scholar
  21. 21.
    Safarpour M, Khataee A, Vatanpour V (2015) Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance. J Memb Sci 489:43–54CrossRefGoogle Scholar
  22. 22.
    Fathizadeh M, Aroujalian A, Raisi A (2011) Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J Memb Sci 375:88–95CrossRefGoogle Scholar
  23. 23.
    Ahmad A, Waheed S, Khan S M, E-Gul S, Shafiq M, Farooq M et al (2015) Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis. Desalination 355:1–10Google Scholar
  24. 24.
    Duan J, Litwiller E, Pinnau I (2015) Preparation and water desalination properties of POSS polyamide nanocomposite reverse osmosis membranes. J Membr Sci 473:157–164CrossRefGoogle Scholar
  25. 25.
    Ben-Sasson M, Lu X, Bar-Zeev E, Zodrow KR, Nejati S, Qi G (2014) In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Water Res 62:70–260CrossRefGoogle Scholar
  26. 26.
    Sabir A, Shafiq M, Islam A, Sarwar A, Dilshad MR, Shafeeq A et al (2015) Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis. Carbohydr Polym 132:589–597CrossRefGoogle Scholar
  27. 27.
    Shenvi SS, Isloor AM, Ismail AF (2015) A review on RO membrane technology: developments and challenges. Desalination 368:10–26CrossRefGoogle Scholar
  28. 28.
    Daer S, Kharraz J, Giwa A, Hasan SW (2015) Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination 367:37–48CrossRefGoogle Scholar
  29. 29.
    Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination-development to date and future potential. J Membr Sci 370:1–22CrossRefGoogle Scholar
  30. 30.
    Khan MT, Hong PY, Nada N, Croue JP (2015) Does chlorination of seawater reverse osmosis membranes control biofouling? Water Res 78:84–97CrossRefGoogle Scholar
  31. 31.
    Mahdavi H, Shahalizade T (2015) Preparation, characterization and performance study of cellulose acetate membranes modified by aliphatic hyperbranched polyester. J Membr Sci 473:256–266CrossRefGoogle Scholar
  32. 32.
    Muhammed A, Hashash E, Mekewi Guirguis, Ramadan Hassanien (2012) Polyvinyl alcohol cellulose acetate composite reverses osmosis membranes: I. Synthesis and characterization. Hydrol Curr Res 3:1–7CrossRefGoogle Scholar
  33. 33.
    Helal N, Alzoubi H, Darwish NA, Mohamed AW, Abu Arabi M (2004) A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy. Desalination 170:281–308CrossRefGoogle Scholar
  34. 34.
    Lau WJ, Ismail AF (2009) Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination 245:321–348CrossRefGoogle Scholar
  35. 35.
    Song YJ, Liu F, Sun BH (2005) Preparation, characterization and application of thin film composite nanofiltration membranes. J Appl Polym Sci 95:1251–1261CrossRefGoogle Scholar
  36. 36.
    Zhang YF, Xiao CF, Liu EH, Du QY, Wang X, Yu HL (2006) Investigations on the structures and performances of a polypiperazine amide/polysulfone composite membrane. Desalination 191:291–295CrossRefGoogle Scholar
  37. 37.
    Song YJ, Sun P, Henry LL, Sun BH (2005) Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process. J Membr Tech 251:67–79CrossRefGoogle Scholar
  38. 38.
    Cheryan M (1998) Ultrafiltration and microfiltration handbook. Technomic Publishing Co., Inc., LancasterGoogle Scholar
  39. 39.
    Oh NW, Jegal J, Lee KH (2001) Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). II. Preparation and characterization of polyamide composite membranes. J Appl Polym Sci 80:2729–2736CrossRefGoogle Scholar
  40. 40.
    Verissimo S, Peinemann KV, Bordado J (2006) Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes. J Membr Sci 279:266–275CrossRefGoogle Scholar
  41. 41.
    Subramanian S, Balamurugan R, Kaur S, Ramakrishna S (2013) Potential of engineered electrospun nanofiber membranes for nanofiltration applications. Dry Technol 31:163–169CrossRefGoogle Scholar
  42. 42.
    Wagh R, Parungao G, Viola RE, Escobar IC (2015) A new technique to fabricate high-performance biologically inspired membranes for water treatment. Sep Puri Technol 156:754–765CrossRefGoogle Scholar
  43. 43.
    Yu SC, Zheng YP, Zhou Q, Shuai S, Lü ZH, Gao CJ (2012) Facile modification of polypropylene hollow fiber microfiltration membranes for nanofiltration. Desalination 298:49–58CrossRefGoogle Scholar
  44. 44.
    Miao J, Chen GH, Li LL, Dong SX (2007) Formation and characterization of carboxymethyl cellulose sodium (CMC-Na)/poly (vinylidene fluoride) (PVDF) composite nanofiltration membranes. Sep Purif Technol 42:3085–3099Google Scholar
  45. 45.
    Shao L-L, An Q-F, Ji Y-L, Zhao Q, Wang X-S, Zhu B-K, Gao C-J (2014) Preparation and characterization of sulfated carboxymethyl cellulose nanofiltration membranes with improved water permeability. Desalination 338:74–83Google Scholar
  46. 46.
    Su J, Yang Q, Teo JF, Chung T-S (2010) Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. J Membr Sci 355:36–44CrossRefGoogle Scholar
  47. 47.
    Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47:2217–2262CrossRefGoogle Scholar
  48. 48.
    Loeb S, Sourirajan S (1964) High flow semipermeable membrane for separation of water from saline solution. US Patent, US3133132Google Scholar
  49. 49.
    Sivakumar M, Mohan DR, Rangarajan R (2005) Studies on cellulose acetate-polysulfone ultrafiltration membranes II. Effect of additive concentration. J Membr Sci 268:208–219CrossRefGoogle Scholar
  50. 50.
    Elimelech M, Zhu XA, Childress, Hong S (1997) Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J Membr Sci 127:101–109CrossRefGoogle Scholar
  51. 51.
    Mulder M (1996) Basic principles of membrane technology. Kluwer Academic Publishers, LondonCrossRefGoogle Scholar
  52. 52.
    Hoek E, Jawor A (2002) Nano-filtration separations. Dekker Encyclopedia of Nanoscience and NanotechnologyGoogle Scholar
  53. 53.
    Moriya A, Maruyama T, Ohmukai Y, Sotani T, Matsuyama H (2009) Preparation of poly(lactic acid) hollow fiber membranes via phase separation methods. J Membr Sci 342:307–312CrossRefGoogle Scholar
  54. 54.
    Goetz LA, Jalvo B, Rosal R, Mathew AP (2016) Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J Membr Sci 510:238–248CrossRefGoogle Scholar
  55. 55.
    Crespo J, Brazinha C (2015) Fundamental of pervaportion. In: Basile A, Figoli A, Khayet M (eds) Pervaporation, vapour permeation and membrane distillation. Woodhead Publishing, Sawston, pp 3–17Google Scholar
  56. 56.
    Dobrak A, Figoli A, Chovau S, Galiano F, Simone S, Vankelecom I, Drioli E, Van der Bruggen B (2010) Performance of PDMS membranes in pervaporation: effect of silicalite fillers and comparison with SBS membranes, J Colloid Interf Sci 346:254–264Google Scholar
  57. 57.
    Prasad NS, Moulik S, Bohra S, Rani KY, Sridhar S (2016) Solvent resistant chitosan/poly(ether-block-amide) composite membranes for pervaporation of n-methyl-2-pyrrolidone/water mixtures. Carbohyd Polym 136:1170–1181CrossRefGoogle Scholar
  58. 58.
    Shen J, Chu Y, Ruan H, Wu L, Gao C, Van der Bruggen B (2014) Pervaporation of benzene/cyclohexane mixtures through mixed matrix membranes of chitosan and Ag+/carbon nanotubes. J Membr Sci 462:160–169CrossRefGoogle Scholar
  59. 59.
    Zereshki S, Figoli A, Madaeni SS, Simone S, Drioli E (2010) Pervaporation separation of MeOH/MTBE with poly(lactic acid) membranes. J Appl Polym Sci 118:1364–1371Google Scholar
  60. 60.
    Jiraratananon R, Chanachai A, Huang RYM, Uttapap D (2002) Pervaporation dehydration of ethanol–water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes I. Effect of operating conditions. J Membr Sci 195:143–151CrossRefGoogle Scholar
  61. 61.
    Kalyani S, Smitha B, Sridhar S, Krishnaiah A (2006) Blend membranes of sodium alginate and hydroxyethylcellulose for pervaporation-based enrichment of t-butyl alcohol. Carbohyd Polym 64:425–432CrossRefGoogle Scholar
  62. 62.
    Albini A, Protti S (2015) Process intensification. In: Organic synthesis in paradigms in green chemistry and technology. Part of the series Springer briefs in molecular science, pp 87–103Google Scholar
  63. 63.
    Garcìa-Serna J, Perez-Barrigòn L, Cocero MJ (2007) New trends for design towards sustainability in chemical engineering: green engineering. Chem Eng J 133:7–30CrossRefGoogle Scholar
  64. 64.
    Shirazi S, Lin C J (2016) Sustainable water technologies. In Chen DH (ed) Membrane technology for water purification and desalination in sustainable water technologiesGoogle Scholar
  65. 65.
    Troy DB, Beringer P (2006) Remington: the science and practice of pharmacy, 21st edn. Lippincott Williams & Wilkins, Baltimore, p 298Google Scholar
  66. 66.
    Kiran E (2016) Supercritical fluids and polymers—the year in review—2014. J Supercrit Fluids 110:126–153CrossRefGoogle Scholar
  67. 67.
    Figoli A, Marino T, Galiano F. (2016) Polymeric membranes in biorefinery. In: Figoli A, Cassano A, Basile A (eds) Membrane technologies for biorefinering, Woodhead Publishing Series in Energy, Sawston, pp 29–59Google Scholar
  68. 68.
    Drioli E, Brunetti A, Di Profio G, Barbieri G (2012) Process intensification strategies and membrane engineering. Green Chem 14:1561–1572CrossRefGoogle Scholar
  69. 69.
    Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability. Sus Mat Technol 7:1–28Google Scholar
  70. 70.
    Criscuoli A, Zhong J, Figoli A, Carnevale MC, Huang RR, Drioli E (2008) Treatment of dye solutions by vacuum membrane distillation. Water Res 42(2):5031–5037CrossRefGoogle Scholar
  71. 71.
    Bottino A, Camera Roda G, Capannelli G, Munari S (1991) The formation of microporous polyvinylidene difluoride membranes by phase separation. J Membr Sci 57:1–20CrossRefGoogle Scholar
  72. 72.
    Capello C, Fischer U, Hungerbühler K (2007) What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem 9:927–934CrossRefGoogle Scholar
  73. 73.
    Cheremisinoff NP (2003) Industrial solvents handbook, revised and expanded. CRC Press, New YorkCrossRefGoogle Scholar
  74. 74.
    Guillen GR, Pan Y, Li M, Hoek EMV (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50:3798–3817CrossRefGoogle Scholar
  75. 75.
    Martins NC, Rodrigues LB, do Nascimiento FT, da Silveira GM, Corte JF, Flach MV, Rodrigues MAS, Celso F, Jahno VD, de Martins RM (2016) Evaluation of the influence of method preparation in properties of heterogeneous ion exchange membranes. In: Brebbia CA, Itoh H (eds) WIT transactions on ecology and the environment. WIT Press, Billerica, p 202Google Scholar
  76. 76.
    IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Internal Report 14/002, Report of the Advisory Group to Recommend Priorities for IARC Monographs during 2015–2019, 2014Google Scholar
  77. 77.
    Gadge ST, Bhanage BM (2016) Selection of Reaction media. In: Joshi J, Ranade V (eds) Industrial catalytic processes for fine and specialty chemicals. Elsevier, Amsterdam, pp 221–262Google Scholar
  78. 78.
    Medina-Gonzalez Y, Aimar P, Lahitte JF, Remigy JC (2011) Towards green membranes: preparation of cellulose acetate ultrafiltration membranes using methyl lactate as a biosolvent. Int J Sust Engin 4:75–83CrossRefGoogle Scholar
  79. 79.
    Medina Gonzales Y, Remigy JC (2008) Green ultrafiltration membranes. In: Conference proceedings, innovation for sustainable production, BrugesGoogle Scholar
  80. 80.
    Pereira CSM, Silva VMTM, Rodrigues AE (2011) Ethyl lactate as a solvent: properties, applications and production processes—a review. Green Chem 13:2658–2671CrossRefGoogle Scholar
  81. 81.
    Aparicio S, Alcade R (2009) The green solvent ethyl lactate: an experimental and theoretical characterization. Green Chem 11:65–78CrossRefGoogle Scholar
  82. 82.
    Moore T, Chen H, Bourdette A (2015) US 2015/0352502 A1 PatentGoogle Scholar
  83. 83.
    Randovà A, Bartovská L, Morávek P, Matějka P, Novotná M, Matějková S, Drioli E, Figoli A, Lanč M, Friess K (2016) A fundamental study of the physicochemical properties of Rhodiasolv®Polarclean: a promising alternative to common and hazardous solvents. J Mol Liq 224:1163–1171CrossRefGoogle Scholar
  84. 84.
    Jung JT, Kim JF, Wang HH, Di Nicolò E, Drioli E, Lee YM (2016) Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J Membr Sci 514:250–263CrossRefGoogle Scholar
  85. 85.
    Hassankiadeh T, Cui Z, Kim JH, Shin DW, Lee SY, Sanguineti A, Arcella V, Lee YM, Drioli E (2015) Microporous poly(vinylidene fluoride) hollow fiber membranes fabricated with PolarClean as water-soluble green diluent and additives. J Membr Sci 479:204–212CrossRefGoogle Scholar
  86. 86.
    Sanguineti A, Di Nicolò E, Lee Y M, Drioli E, Cui Z, Hassankiadeh NT, Lee SY (2015) Process for manufacturing fluoropolymer membranes. Patent: WO2015051928 A1Google Scholar
  87. 87.
    Sawada SI, Ursino C, Galiano F, Simone S, Drioli E, Figoli A (2015) Effect of citrate-based non-toxic solvents on poly(vinylidene fluoride) membrane preparation via thermally induced phase separation. J Membr Sci 493:232–242CrossRefGoogle Scholar
  88. 88.
    Hassankiadeh NT, Cui Z, Kim JH, Shin DW, Sanguineti A, Arcella V, Lee YM, Drioli E (2014) PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: effect of PVDF molecular weight. J Membr Sci 471:237–246CrossRefGoogle Scholar
  89. 89.
    Wu L, Sun J (2015) An improved process for polyvinylidene fluoride membrane preparation by using a water soluble diluent via thermally induced phase separation technique. Mater Des 86:204–214CrossRefGoogle Scholar
  90. 90.
    Ghasem N, Al-Marzouqi1 M, Al-Marzouqi R, Dowaidar A, Vialatte M (2010) Removal of CO2 from gas mixture using hollow fiber membrane contactors fabricated from PVDF/Triacetin/Glycerol cast solution. In: ECCE’10/ECCIE’10/ECME’10/ECC’10, Proceedings of the European conference of chemical engineering, and European conference of civil engineering, and European conference of mechanical engineering, and European conference on Control Tenerife, Spain, pp 136–141. ISBN: 978-960-474-251-6Google Scholar
  91. 91.
    Cui Z, Hassankiadeh NT, Lee SY, Sanguineti A, Arcella V, Lee YM, Drioli E (2015) Tailoring novel fibrillar morphologies in poly(vinylidene fluoride) membranes using a low toxic triethyleneglycoldiacetate (TEGDA) diluent. J Membr Sci 473:128–136CrossRefGoogle Scholar
  92. 92.
    Nejati A, Boo C, Osuji CO, Elimelech M (2015) Engineering flat sheet microporous PVDF films for membrane distillation. J Membr Sci 492:355–363CrossRefGoogle Scholar
  93. 93.
    Fadhil S, Marino T, Makki HF, Alsalhy QF, Blefari S, Macedonio F, Di Nicolò E, Giorno L, Drioli E, Figoli A (2016) Novel PVDF-HFP flat sheet membranes prepared by triethyl phosphate (TEP) solvent for direct contact membrane distillation. Chem Eng Process 102:16–26CrossRefGoogle Scholar
  94. 94.
    Xing DY, Peng N, Chung TS (2010) Formation of cellulose acetate membranes via phase inversion using ionic liquid, [BMIM]SCN, as the solvent. Ind Eng Chem Res 49(18):8761–8769CrossRefGoogle Scholar
  95. 95.
    Xing DY, Peng N, Chung TS (2011) Investigation of unique interactions between cellulose acetate and ionic liquid [EMIM]SCN, and their influences on hollow fiber ultrafiltration membranes. J Membr Sci 380(1–2):87–97CrossRefGoogle Scholar
  96. 96.
    Xing DY, Dong W, Chung TS (2016) Effects of different ionic liquids as green solvents on the formation and ultrafiltration performance of CA hollow fiber membranes. Ind Eng Chem Res 55:7505–7513CrossRefGoogle Scholar
  97. 97.
    Reverchon E, Cardea S (2010) Preparation of membranes using supercritical fluids. In: Drioli E, Giorno L (eds) Comprehensive membrane science and engineering, 1st edn, vol 1. Elsevier, Amsterdam, pp 199–216Google Scholar
  98. 98.
    Reverchon E, Cardea S (2004) Formation of cellulose acetate membranes using a supercritical fluid assisted process. J Membr Sci 240:187–195CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • A. Figoli
    • 1
    Email author
  • T. Marino
    • 1
  • F. Galiano
    • 1
  • S. S. Dorraji
    • 2
  • E. Di Nicolò
    • 3
  • T. He
    • 4
  1. 1.Institute on Membrane Technology (ITM-CNR)RendeItaly
  2. 2.Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of ScienceUniversity of ZanjanZanjanIran
  3. 3.Solvay Specialty Polymers ItalyBollateItaly
  4. 4.Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina

Personalised recommendations