Skip to main content

Sustainability and How Membrane Technologies in Water Treatment Can Be a Contributor

  • 2509 Accesses

Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

Water treatment technologies inherit the environmental, economic, and societal burdens either from polluted natural sources for potable water, or from domestic sewer water for municipal wastewater treatment plants, or from various industrial processing plants that produce highly contaminated wastewater. Application of various membrane technologies for wastewater has been growing because they enjoy relative advantage over other technologies in terms of sustainability. This advantage mainly emanates from economic benefits, ease of operation and safety. This chapter discusses what sustainability means for wastewater treatment and what specific sustainability advantages membrane processes can demonstrate. Applicable sustainability indicators are identified for various membrane technologies that can tackle a large number of wastewater problems.

Keywords

  • Sustainability indicators
  • Sustainability assessment
  • Membrane technologies
  • Wastewater treatment

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The required pressure for brakish water can be as high as 26 bar, and for seawater as high as 80 bar.

  2. 2.

    According to the Intergovernmental Panel for Climate Change, climate change will affect the hydrological cycles of the earth, making some areas arid, others wetter [10].

  3. 3.

    Software packages such as Simapro (http://simapro.com/business/?gclid=CLPpo834rcgCFdCPHwodTnQPQw), Gabi (http://www.gabi-software.com/america/index/) can be used. These packages provide various environmentally relevant impacts (such as acidification potential, ozone depletion potential, cancer causing potential, etc.) per unit mass of the toxics released. USA EPA has freely available package, TRACI, which also can be used for impact assessment.

  4. 4.

    Such as Aspen Plus (http://www.aspentech.com/products/engineering/aspen-plus/).

References

  1. Nickson R, McArthur J, Burgess W et al (1998) Arsenic poisoning in Bangladesh groundwater. Nature 395:338

    CrossRef  CAS  Google Scholar 

  2. Ötleş S, Çağındı Ö (2010) Health importance of arsenic in drinking water and food. Env Geochem Health 32:367–371

    CrossRef  Google Scholar 

  3. Flanagan SV, Johnston RB, Zheng Y (2012) Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation. Bull World Health Organ 90:839–846

    CrossRef  Google Scholar 

  4. EPA Report (2004) EPA 832-R-04-001: primer for municipal wastewater treatment systems. https://www3.epa.gov/npdes/pubs/primer.pdf

  5. Asano T, Levine AD (1996) Wastewater reclamation, recycling and reuse: past, present, and future. Water Sci Techn 33(10–11):1–14

    CAS  Google Scholar 

  6. Sikdar SK, Atimtay A (2011) Security of industrial supply and management. Springer, Heidelberg

    Google Scholar 

  7. The World Bank (2015) http://data.worldbank.org/indicator/ER.H2O.FWDM.ZS. Accessed 6 Oct 2015

  8. Kumar S (2013) The looming treat of water scarcity. http://vitalsigns.worldwatch.org. Accessed 17 Mar 2016

  9. AQUASTAT (2014) http://www.fao.org/nr/aquastat. Accessed 17 Mar 2016

  10. Climate Institute (2015), http://www.climate.org/topics/water.html. Accessed 6 Oct 2015

  11. WCED, Our Common Future (1987) Oxford University Press, Oxford, UK. http://www.un-documents.net/our-common-future.pdf. Accessed 6 Oct 2015

  12. Fet A (2003) Eco-efficiency reporting exemplified by case studies. Clean Techn Env Pol 5(5):232–237

    Google Scholar 

  13. Sikdar SK, Sengupta D, Harten P (2012) More on aggregating multiple indicators into a single index for sustainability analyses. Clean Techn Env Pol 14(5):765–773

    CrossRef  Google Scholar 

  14. Mukherjee R, Sengupta D, Sikdar S (2013) Parsimonious use of indicators for evaluating sustainability systems with multivariate statistical analyses. Clean Techn Env Pol 15(4):1–8

    CrossRef  Google Scholar 

  15. Santos SF, Brandi HS (2015) Application of the GUM approach to estimate uncertainties in sustainability systems. Clean Techn Env Pol 18(1). doi:10.1007/s10098-015-1029-3

  16. Brandi HS, Daroda RJ, Olinto AC (2014) The use of the Canberra metrics to aggregate metrics to sustainability. Clean Techn Env Pol 16(5):911–920

    CrossRef  Google Scholar 

  17. Semiat R (2008) Energy demands in desalination processes. Env Sci & Techn 42(22):8193–8201

    CrossRef  CAS  Google Scholar 

  18. Wolf PH, Siverns S, Monti S (2005) UF membranes for RO desalination pretreatment. Desal 182:293–300

    CrossRef  CAS  Google Scholar 

  19. Pearce GK (2007) The case for UF/MF pretreatment to RO in seawater applications. Desal 203:286–295

    CrossRef  CAS  Google Scholar 

  20. Knops F, van Hoof S, Futselaar H et al (2007) Economic evaluation of a new ultrafiltration membrane for pretreatment of seawater reverse osmosis. Desal 203:300–306

    CrossRef  CAS  Google Scholar 

  21. Vedavyasan CV (2007) Pretreatment trends-an overview. Desal 203:296–299

    CAS  Google Scholar 

  22. Ben-Dov E, Ben-David E, Messalem R, Herzberg M, Kushmaro A (2014) Biofilm formation on RO membranes: the impact of seawater pretreatment. Desal Water Treat 1–8

    Google Scholar 

  23. Wisniewski C (2007) Membrane bioreactor for water reuse. Desalination 203:15–19

    CrossRef  CAS  Google Scholar 

  24. Zuthi MFR, Ngo HH, Guo WS (2012) Modelling bioprocesses and membrane fouling in membrane bioreactor (MBR): a review towards finding an integrated model framework. Biores Technol 122:119–129

    CrossRef  CAS  Google Scholar 

  25. Choi JH, Fukushi K, Yamamoto K (2007) A submerged nanofiltration membrane bioreactor for domestic wastewater treatment: the performance of cellulose acetate nanofiltration membranes for long-term operation. Sep Purif Techn 52(3):470–477

    CrossRef  CAS  Google Scholar 

  26. Leiknes T (2009) Wastewater treatment by membrane bioreactors. In: Drioli E, Giorno L (eds) Membrane operations: innovative separations and transformations. WILEY-VCH, Weinheim, pp 363–395

    CrossRef  Google Scholar 

  27. Figoli A, Hoinkis J, Bundschuh J (2016) Membrane technologies for water treatment. Removal of toxic trace elements with emphasys on arsenic, fluoride and uranium. CRC Press Taylor & Francis Group, London

    Google Scholar 

  28. Shih MC (2005) An overview of arsenic removal by pressure driven membrane processes. Desalination 172:85–97

    CrossRef  CAS  Google Scholar 

  29. Figoli A, Cassano A, Criscuoli A, Mozumder MSI, Uddin MT, Islam MA, Drioli E (2010) Influence of operating parameters on the arsenic removal by nanofiltration. Water Res 44:97–104

    CrossRef  CAS  Google Scholar 

  30. Cassano A, Conidi C, Ruby-Figuero R et al (2015) A two-step nanofiltration process for the production of phenolic-rich fractions from artichoke aqueous extracts. Int J Mol Sci 16(4):8968–8987

    CrossRef  CAS  Google Scholar 

  31. Russo C (2007) A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW). J Membr Sci 288:239–246

    CrossRef  CAS  Google Scholar 

  32. Drioli E, Criscuoli A, Curcio E (2006) Membrane contactors: fundamentals, applications and potentialities. Membrane science and technology series, vol 11. Elsevier, Amsterdam

    Google Scholar 

  33. LiquiCel (2015) http://www.liquicel.com. Accessed 20 Nov 2015

  34. Criscuoli A, Carnevale MC, Mahmoudi H et al (2011) Membrane contactors for the oxygen and pH control in desalination. J Membr Sci 376:207–213

    CrossRef  CAS  Google Scholar 

  35. Alkhudhiri A, Darwish N, Hilal N (2012) Membrane distillation: a comprehensive review. Desalination 287:2–18

    CrossRef  CAS  Google Scholar 

  36. Khayet M, Matsuura T (2011) Membrane distillation: principles and applications. Elsevier, Amsterdam

    Google Scholar 

  37. Qu D, Wang J, Hou D et al (2009) Experimental study of arsenic removal by direct contact membrane distillation. J Haz Mater 163:874–879

    CrossRef  CAS  Google Scholar 

  38. Pal P, Manna AK (2010) Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes. Water Res 44:5750–5760

    CrossRef  CAS  Google Scholar 

  39. Criscuoli A, Bafaro P, Drioli E (2013) Vacuum membrane distillation for purifying waters containing arsenic. Desalination 323:17–21

    CrossRef  CAS  Google Scholar 

  40. Khan EU, Martin AR (2014) Water purification of arsenic-contaminated drinking water via air gap membrane distillation (AGMD). Period Polytech Mech Eng 58(1):47–53

    CrossRef  Google Scholar 

  41. Méricq J-P, Laborie S, Cabassud C (2010) Vacuum membrane distillation of seawater reverse osmosis Brines. Water Res 44:5260–5273

    Google Scholar 

  42. Drioli E, Di Profio G, Curcio E (2012) Progress in membrane crystallization. Current Opin Membr Eng 1:178–182

    CrossRef  CAS  Google Scholar 

  43. Redondo J, Busch M, De Witte J-P (2003) Boron removal from seawater using FILMTECHTM high rejection SWRO membranes. Desalination 156:229–238

    CrossRef  CAS  Google Scholar 

  44. Criscuoli A, Rossi E, Cofone F et al (2010) Boron removal by membrane contactors: the water that purifies water. Clean Techn Env Pol 12(1):53–61

    CrossRef  CAS  Google Scholar 

  45. Cassano A, Conidi C, Ruby-Figuero R (2014) Recovery of flavonoids from orange press liquor by an integrated membrane process. Membr (Basel) 4(3):509–524

    Google Scholar 

  46. Van der Bruggen B (2013) Integrated membrane separation processes for recycling of valuable wastewater streams: nanofiltration, membrane distillation and membrane crystallizers revisited. Ind Eng Chem Res 52:10335–10341

    CrossRef  Google Scholar 

  47. Criscuoli A, Drioli E (2007) New metrics for evaluating the performance of membrane operations in the logic of process intensification. Ind Eng Chem Res 46:2268–2271

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhas K. Sikdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sikdar, S.K., Criscuoli, A. (2017). Sustainability and How Membrane Technologies in Water Treatment Can Be a Contributor. In: Figoli, A., Criscuoli, A. (eds) Sustainable Membrane Technology for Water and Wastewater Treatment. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5623-9_1

Download citation