Advertisement

The Potential of Membrane Technology for Treatment of Textile Wastewater

  • Bart Van der BruggenEmail author
  • Çiğdem Balçık Canbolat
  • Jiuyang Lin
  • Patricia LuisEmail author
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

The textile industry is characterized by being a very demanding consumer of high-quality water. Thus, both quantity and quality of water are key issues that affect this sector considerably. However, in a global context in which water is becoming the twenty-first-century paragon, the choice of wasting water is not anymore acceptable. The textile industry is facing thus a double objective: to minimize drastically the water consumption while using water with high quality. This objective involves that (1) reuse of water is essential, and (2) effective and economic processes to recover the quality of water are required. Membrane technology offers the possibility to do that at low expenses. The potential of membrane technology to treat wastewater and recover both the water itself and the pollutants (organic and inorganic substances), which become then valuable compounds, has been demonstrated in the recent research. Nanofiltration is one of the most attractive technologies for this application since nanofiltration membranes can retain ions and small organic molecules from an aqueous solution. But it is also very challenging due to the presence of salts and operating problems such as fouling, salt deposition, etc. This book chapter summarizes the main achievements of nanofiltration in the textile industry, focusing on three different scenarios: (i) nanofiltration as stand-alone technology; (ii) nanofiltration in hybrid processes, and (iii) nanofiltration in water fractionation (recovery of water, dyes and salts). The last advances on nanofiltration as well as the main limitations and challenges still to be faced are also described in order to guide the reader toward further research.

Keywords

Textile processing Wastewater Pressure driven membrane filtration Nanofiltration Ultrafiltration Concentrate treatment Advanced oxidation Hybrid processes Dyes Resource recovery Water recycling 

References

  1. 1.
    Winkler K, Wiesmann U, Radeke K-H (1997) Membrantrennverfahren für Farbstoff- und Textilprozesswasser- Membrantestungen fiir Salzfrachten. Kohlenwasserstoffe und Farbstoffe. Chem. Technik 49(1):23–29Google Scholar
  2. 2.
    Hao J, Zhao Q (1994) The Development of membrane technology for waste water treatment in the textile industry in China. Desalination 98:353–360CrossRefGoogle Scholar
  3. 3.
    Sojka-Ledakowicz J, Koprowski T, Machnowski W, Knudsen HH (1998) Membrane filtration of textile dyehouse wastewater for technological water reuse. Desalination 199:1–10CrossRefGoogle Scholar
  4. 4.
    Tegtmeyer D (1992) Möglichkeiten und Chancen einer membrantechnischen Abwasserbehandlung in der Textilfärberei, Vortrag zur Hauptversammlung des Vereins der Textilchemiker und Coloristen, 19/6/92, Baden-BadenGoogle Scholar
  5. 5.
    Rautenbach R, Gröschl A (1990) Separation potential of nanofiltration membranes. Desalination 7:73–84CrossRefGoogle Scholar
  6. 6.
    Drioli E (2002) An international report on Membranes Science and Technology perspectives and needs. In: International conference on membranes (ICOM 2002), Toulouse (France), 7–12 July 2002Google Scholar
  7. 7.
    Van der Bruggen B, De Vreese I, Vandecasteele C (2001) Water Reclamation in the Textile Industry: nanofiltration of dye baths for wool dyeing. Ind Eng Chem Res 40(18):3973–3978CrossRefGoogle Scholar
  8. 8.
    Van der Bruggen B, Curcio E, Drioli E (2004) Process intensification in the textile industry: the role of membrane technology. J Environ Manage 73(3):267–274CrossRefGoogle Scholar
  9. 9.
    Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) Pressure driven membrane processes in process and wastewater treatment and in drinking water production. Environ Progr 22(1):46–56CrossRefGoogle Scholar
  10. 10.
    Buscio V, Crespi M, Gutierrez-Buzan C (2016) Application of PVDF ultrafiltration membranes to treat and reuse textile wastewater. Desal Water Treat 57(18):8090–8096CrossRefGoogle Scholar
  11. 11.
    Zuriaga-Agusti E, Alventosa-deLara E, Barredo-Damas S, Alcaina-Miranda MI, Iborra-Clar MI, Mendoza-Roca JA (2014) Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system. Water Res 54:199–210CrossRefGoogle Scholar
  12. 12.
    Thamaraiselvan C, Noel M (2015) Membrane processes for dye wastewater treatment: recent progress in fouling control. Crit Rev Environ Sci Technol 45(10):1007–1040CrossRefGoogle Scholar
  13. 13.
    Arnal JM, Leon MC, Lora J, Gozalvez JM, Santafe A, Sanz D, Tena J (2008) Ultrafiltration as a pre-treatment of other membrane technologies in the reuse of textile waste waters. Desalination 221(1–3):405–412CrossRefGoogle Scholar
  14. 14.
    Simonic M (2009) Efficiency of ultrafiltration for the pre-treatment of dye-bath effluents. Desalination 245(1–3):701–707CrossRefGoogle Scholar
  15. 15.
    Van der Bruggen B, Cornelis G, Vandecasteele C, Devreese I (2005) Fouling of nanofiltration and ultrafiltration membranes applied for wastewater regeneration in the textile industry. Desalination 175:111–119CrossRefGoogle Scholar
  16. 16.
    Ong YK, Li FY, Sun SP, Zhao BW, Liang CZ, Chung TS (2014) Nanofiltration hollow fiber membranes for textile wastewater treatment: lab-scale and pilot-scale studies. Chem Eng Sci 114:51–57CrossRefGoogle Scholar
  17. 17.
    Qin JJ, Oo MH, Kekre KA (2007) Nanofiltration for recovering wastewater from a specific dyeing facility. Sep Purif Technol 56(2):199–203CrossRefGoogle Scholar
  18. 18.
    Hildebrand C, Kuglin VB, Brandao HL, Vilar VJP, Ulson Guelli, de Souza SMA, Ulson de Souza AA (2014) Insights into nanofiltration of textile wastewaters for water reuse. Clean Technol Environ Policy 16(3):591–600CrossRefGoogle Scholar
  19. 19.
    Kurt E, Koseoglu-Imer DY, Dizge N, Chellam S, Koyuncu I (2012) Pilot-scale evaluation of nanofiltration and reverse osmosis for process reuse of segregated textile dyewash wastewater. Desalination 302:24–32CrossRefGoogle Scholar
  20. 20.
    Lau WJ, Ismail AF (2009) Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination 245(1–3):321–348CrossRefGoogle Scholar
  21. 21.
    Chidambaram T, Oren Y, Noel M (2015) Fouling of nanofiltration membranes by dyes during brine recovery from textile dye bath wastewater. Chem Eng J 262:156–168CrossRefGoogle Scholar
  22. 22.
    Koyuncu I, Topacik D, Yuksel E (2004) Reuse of reactive dyehouse wastewater by nanofiltration: process water quality and economical implications. Sep Purif Technol 36(1):77–85CrossRefGoogle Scholar
  23. 23.
    Dasgupta J, Sikder J, Chakraborty S, Curcio S, Drioli E (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. J Environ Manage 147:55–72CrossRefGoogle Scholar
  24. 24.
    He Y, Wang X, Xu J, Yan J, Ge Q, Gu X, Jian L (2013) Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents. Biores Technol 133:150–157CrossRefGoogle Scholar
  25. 25.
    Masmoudi G, Ellouze E, Ben Amar R (2016) Hybrid coagulation/membrane process treatment applied to the treatment of industrial dyeing effluent. Desal Water Treat 57(15):6781–6791CrossRefGoogle Scholar
  26. 26.
    Vilaseca M, Lopez-Grimau V, Gutierrez-Bouzan C (2014) Valorization of waste obtained from oil extraction in Moringa oleifera seeds: coagulation of reactive dyes in textile effluents. Materials 7(9):6569–6584CrossRefGoogle Scholar
  27. 27.
    Liang CZ, Sun SP, Zhao BW, Chung TS (2015) Integration of nanofiltration hollow fiber membranes with coagulation-flocculation to treat colored wastewater from a dyestuff manufacturer: a pilot-scale study. Ind Eng Chem Res 54(44):11159–11166CrossRefGoogle Scholar
  28. 28.
    Yang C, Li L, Shi JL, Long C, Li AM (2015) Advanced treatment of textile dyeing secondary effluent using magnetic anion exchange resin and its effect on organic fouling in subsequent RO membrane. J Hazard Mater 284:50–57CrossRefGoogle Scholar
  29. 29.
    Djahida Z, Amel B, Mourad TA, Hayet D, Rachida M (2014) Treatment of a dye solophenyle 4GE by coupling electrocoagulation/nanofiltration. Membrane Water Treat 5(4):251–263CrossRefGoogle Scholar
  30. 30.
    Tunc MS, Yilmaz L, Yetis U, Culfaz-Emecen PZ (2014) Purification and concentration of caustic mercerization wastewater by membrane processes and evaporation for reuse. Sep Sci Technol 49(13):1968–1977CrossRefGoogle Scholar
  31. 31.
    Chamam B, Heran M, Ben Amar R, Grasmick A (2007) Comparison of textile dye treatment by biosorption and membrane bioreactor. Environ Technol 28(12):1325–1331CrossRefGoogle Scholar
  32. 32.
    Yigit NO, Uzal N, Koseoglu H, Harman I, Yukseler H, Yetis U, Civelekoglu G, Kitis M (2009) Treatment of a denim producing textile industry wastewater using pilot-scale membranebioreactor. Desalination 240(1–3):143–150CrossRefGoogle Scholar
  33. 33.
    Rondon H, El-Cheikh W, Boluarte IAR, Chang CY, Bagshaw S, Farago L, Jegatheesan V, Shu L (2015) Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater. Biores Technol 183:75–83CrossRefGoogle Scholar
  34. 34.
    Baeta BEL, Ramos RL, Lima DRS, Aquino SF (2012) Use of submerged anaerobic membrane bioreactor (SAMBR) containing powdered activated carbon (PAC) for the treatment of textile effluents. Water Sci Technol 65(9):1540–1547CrossRefGoogle Scholar
  35. 35.
    Hossain K, Ismail N, Rafatullah M, Quaik S, Nasir M, Maruthi AY, Shaik R (2015) Bioremediation of textile effluent with membrane bioreactor using the white-rot fungus Coriolus versicolor. J Pure Appl Microbiol 9(3):1979–1986Google Scholar
  36. 36.
    Yurtsever A, Calimlioglu B, Gorur M, Cinar O, Sahinkaya E (2016) Effect of NaCl concentration on the performance of sequential anaerobic and aerobic membrane bioreactors treating textile wastewater. Chem Eng J 287:456–465CrossRefGoogle Scholar
  37. 37.
    De Jager D, Sheldon MS, Edwards W (2014) Colour removal from textile wastewater using a pilot-scale dual-stage MBR and subsequent RO system. Sep Purif Technol 135:135–144CrossRefGoogle Scholar
  38. 38.
    Ang WL, Mohammad AW, Hilal N, Leo CP (2015) A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants. Desalination 363:2–18CrossRefGoogle Scholar
  39. 39.
    Suksaroj C, Heran M, Allegre C, Persin F (2005) Treatment of textile plant effluent by nanofiltration and/or reverse osmosis for water reuse. Desalination 178:333–341CrossRefGoogle Scholar
  40. 40.
    Choo KH, Choi SJ, Hwang ED (2007) Effect of coagulant types on textile wastewater reclamation in a combined coagulation/ultrafiltration system. Desalination 202:262–270CrossRefGoogle Scholar
  41. 41.
    Majewska-Nowak K (2008) The effect of a polyelectrolyte on the efficiency of dye-surfactant solution treatment by ultrafiltration. Desalination 221:395–404CrossRefGoogle Scholar
  42. 42.
    Labanda J, Llorens J (2008) Wool scouring waste treatment by a combination of coagulation–flocculation process and membrane separation technology. Chem Eng Proc 47:1061–1068CrossRefGoogle Scholar
  43. 43.
    Lee BB, Choo KH, Chang D, Choi SJ (2009) Optimizing the coagulant dose to control membrane fouling in combined coagulation/ultrafiltration systems for textile wastewater reclamation. Chem Eng J 155:101–107CrossRefGoogle Scholar
  44. 44.
    Simonic M, Lobnik A (2011) The efficiency of a hybrid flocculation/UF process for a real dye-house effluent using hydrophilic and hydrophobic membranes. Desalination 271:219–224CrossRefGoogle Scholar
  45. 45.
    Ellouze E, Tahri N, Amar RJ (2012) Enhancement of textile wastewater treatment process using nanofiltration. Desalination 286:16–23CrossRefGoogle Scholar
  46. 46.
    Li J, Wang D, Yu D, Zhang P, Li Y (2014) Performance and membrane fouling in an integrated membrane coagulation reactor (IMCR) treating textile wastewater. Chem Eng J 240:82–90CrossRefGoogle Scholar
  47. 47.
    Kim TH, Park C, Kim S (2005) Water recycling from desalination and purification process of reactive dye manufacturing industry by combined membrane filtration. J Clean Prod 13:779–786CrossRefGoogle Scholar
  48. 48.
    Kim IC, Lee KH (2006) Dyeing process wastewater treatment using fouling resistant nanofiltration and reverse osmosis membranes. Desalination 192:246–251CrossRefGoogle Scholar
  49. 49.
    Nandy T, Manekar P, Dhodapkar R, Pophali G, Devotta S (2007) Water conservation through implementation of ultrafiltration and reverse osmosis system with recourse to recycling of effluent in textile industry—a case study. Resour Conserv Recycl 51:64–77CrossRefGoogle Scholar
  50. 50.
    Fersi C, Dhahbi M (2008) Treatment of textile plant effluent by ultrafiltration and/or nanofiltration for water reuse. Desalination 222:263–271CrossRefGoogle Scholar
  51. 51.
    Uzal N, Yilmaz L, Yetis U (2009) Microfiltration/ultrafiltration as pretreatment for reclamation of rinsing waters of indigo dyeing. Desalination 240:198–208CrossRefGoogle Scholar
  52. 52.
    Tahri N, Masmoudi G, Allouze E, Jrad A, Drogui P, Ben Amar R (2012) Coupling microfiltration and nanofiltration processes for the treatment at source of dyeing-containing effluent. J Clean Prod 33:226–235CrossRefGoogle Scholar
  53. 53.
    Zheng X, Liu J (2006) Dyeing and printing wastewater treatment using a membrane bioreactor with a gravity drain. Desalination 190:277–286CrossRefGoogle Scholar
  54. 54.
    Debik E, Kaykioglu G, Coban A, Koyuncu I (2010) Reuse of anaerobically and aerobically pre-treated textile wastewater by UF and NF membranes. Desalination 256:174–180CrossRefGoogle Scholar
  55. 55.
    Zuriaga-Agustí E, Iborra-Clar MI, Mendoza-Roca JA, Tancredi M, Alcaina-Miranda MI, Iborra-Clar A (2010) Sequencing batch reactor technology coupled with nanofiltration for textile wastewater reclamation. Chem Eng J 161:122–128CrossRefGoogle Scholar
  56. 56.
    He Y, Wanga X, Xu J, Yan J, Ge Q, Gu X, Jian L (2013) Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents. Bioresour Technol 133:150–157CrossRefGoogle Scholar
  57. 57.
    Aouni A, Fersi C, Ali MBS, Dhahbi M (2009) Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process. J Hazard Mater 168:868–874CrossRefGoogle Scholar
  58. 58.
    Damodar RA, You SJ, Ou SH (2010) Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment. Sep Purif Technol 76:64–71CrossRefGoogle Scholar
  59. 59.
    Jiang H, Zhang G, Huang T, Chen J, Wang Q, Meng Q (2010) Photocatalytic membrane reactor for degradation of acid red B wastewater. Chem Eng J 156:571–577CrossRefGoogle Scholar
  60. 60.
    Zhang J, Wang L, Zhang G, Wang Z, Xu L, Fan Z (2013) Influence of azo dye-TiO2 interactions on the filtration performance in a hybrid photocatalysis/ultrafiltration process. J Coll Interf Sci 389:273–283CrossRefGoogle Scholar
  61. 61.
    Kertesz S, Caki J, Jirankova H (2014) Submerged hollow fiber microfiltration as a part of hybrid photocatalytic process for dye wastewater treatment. Desalination 343:106–112CrossRefGoogle Scholar
  62. 62.
    Hairom NHH, Mohammad AW, Kadhum AAH (2014) Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for Congo red dye treatment. Sep Purif Technol 137:74–81CrossRefGoogle Scholar
  63. 63.
    Qu W, Zhang G, Yuan X, Su P (2015) Experimental study on coupling photocatalytic oxidation process and membrane separation for the reuse of dye wastewater. J Water Proc Eng 6:120–128CrossRefGoogle Scholar
  64. 64.
    Xu L, Zhang L, Du L, Zhang S (2014) Electro-catalytic oxidation in treating C.I. Acid Red73 wastewater coupled with nanofiltration and energy consumption analysis. J Membr Sci 452:1–10CrossRefGoogle Scholar
  65. 65.
    Feng F, Xu Z, Li X, You W, Zhen Y (2010) Advanced treatment of dyeing wastewater towards reuse by the combined Fenton oxidation and membrane bioreactor process. J Environ Sci 22(11):1657–1665CrossRefGoogle Scholar
  66. 66.
    Liang P, Riyallin M, Cerneaux S, Lacour S, Petit E, Cretin M (2016) Coupling cathodic electro-Fenton reaction to membrane filtration for AO7 dye degradation: a successful feasibility study. J Memb Sci. 510:182–190CrossRefGoogle Scholar
  67. 67.
    Buscio V, Marin MJ, Crespi M, Gutierrez-Bouzan C (2015) Reuse of textile wastewater after homogenization–decantation treatment coupled to PVDF ultrafiltration membranes. Chem Eng J 265:122–128CrossRefGoogle Scholar
  68. 68.
    Van der Bruggen B, Lejon L, Vandecasteele C (2003) Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes. Environ Sci Technol 37:3733–3738CrossRefGoogle Scholar
  69. 69.
    Praneeth K, Manjunanth D, Bhargava SK, Tardio J, Sridhar S (2014) Economical treatment of reverse osmosis reject of textile industry effluent by electrodialysis–evaporation integrated process. Desalination 333:82–91CrossRefGoogle Scholar
  70. 70.
    Han G, Liang CZ, Chung TS, Weber M, Staudt C, Maletzko C (2016) Combination of forward osmosis (FO) process with coagulation/ flocculation (CF) for potential treatment of textile wastewater. Water Res 91:361–370CrossRefGoogle Scholar
  71. 71.
    Yaman FB, Cakmakci M, Ozkaya B, Karadag D, Yetilmezsoy K, Dora B, Celebi V (2015) Anaerobic treatment of ozonated membrane concentrate. Desal Water Treat 54:2075–2081CrossRefGoogle Scholar
  72. 72.
    Balanosky E, Fernandez J, Kiwi J, Lopez A (1999) Degradation of membrane concentrates of the textile industry by Fenton like reactions in iron-free solutions at biocompatible pH values (pH ≈ 7–8). Water Sci Technol 40:417–424Google Scholar
  73. 73.
    Lopez A, Ricco G, Ciannarella R, Rozzi A, Di Pinto AC, Passino R (1999) Textile wastewater reuse: Ozonation of membrane concentrated secondary effluent. Water Sci Technol 40:99–105Google Scholar
  74. 74.
    Childress AE, Elimelech M (2000) Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics. Environ Sci Technol 34:3710–3716CrossRefGoogle Scholar
  75. 75.
    Kimura K, Amy G, Drewes JE, Heberer T, Kim TU, Watanabe Y (2003) Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J Memb Sci 227:113–121CrossRefGoogle Scholar
  76. 76.
    Sahinkaya E, Uzal N, Yetis U, Dilek FB (2008) Biological treatment and nanofiltration of denim textile wastewater for reuse. J Hazard Mater 153:1142–1148CrossRefGoogle Scholar
  77. 77.
    Ben Amar R, Kechaou N, Palmeri J, Deratani A, Sghaier A (2009) Comparison of tertiary treatment by nanofiltration and reverse osmosis for water reuse in denim textile industry. J Hazard Mater 170:111–117CrossRefGoogle Scholar
  78. 78.
    Ahmad A, Tan L, Shukor S (2008) Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes. J Hazard Mater 151:71–77CrossRefGoogle Scholar
  79. 79.
    Radjenović J, Petrović M, Ventura F, Barceló D (2008) Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res 42:3601–3610CrossRefGoogle Scholar
  80. 80.
    Song J, Li XM, Figoli A, Huang A, Pan C, He T, Jiang B (2013) Composite hollow fiber nanofiltration membranes for recovery of glyphosate from saline wastewater. Water Res 47:2065–2074CrossRefGoogle Scholar
  81. 81.
    Wang X, Zhang C, Ouyang P (2002) The possibility of separating saccharides from a NaCl solution by using nanofiltration in diafiltration mode. J Membr Sci 204:271–281CrossRefGoogle Scholar
  82. 82.
    Capelle N, Moulin P, Charbit F, Gallo R (2002) Purification of heterocyclic drug derivatives from concentrated saline solution by nanofiltration. J Membr Sci 196:125–141CrossRefGoogle Scholar
  83. 83.
    Hong SU, Miller MD, Bruening ML (2006) Removal of dyes, sugars, and amino acids from NaCl solutions using multilayer polyelectrolyte nanofiltration membranes. Ind Eng Chem Res 45:6284–6288CrossRefGoogle Scholar
  84. 84.
    He Y, Li GM, Wang H, Jiang ZW, Zhao JF, Su HX, Huang QY (2009) Experimental study on the rejection of salt and dye with cellulose acetate nanofiltration membrane. J Taiwan Inst Chem Eng 40:289–295CrossRefGoogle Scholar
  85. 85.
    Petrinić I, Andersen NPR, Šostar-Turk S, Le Marechal AM (2007) The removal of reactive dye printing compounds using nanofiltration. Dyes Pigm 74:512–518CrossRefGoogle Scholar
  86. 86.
    Koyuncu I (2002) Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: effects of feed concentration and cross flow velocity. Desalination 143:243–253CrossRefGoogle Scholar
  87. 87.
    Koyuncu I, Topacik D (2003) Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye/salt mixtures. Sep Purif Technol 33:283–294CrossRefGoogle Scholar
  88. 88.
    Van der Bruggen B, Daems B, Wilms D, Vandecasteele C (2001) Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry. Sep Purif Technol 22:519–528CrossRefGoogle Scholar
  89. 89.
    Van der Bruggen B, Koninckx A, Vandecasteele C (2004) Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Res 38:1347–1353CrossRefGoogle Scholar
  90. 90.
    Tahri N, Masmoudi G, Ellouze E, Jrad A, Drogui P, Ben Amar R (2012) Coupling microfiltration and nanofiltration processes for the treatment at source of dyeing-containing effluent. J Clean Prod 33:226–235CrossRefGoogle Scholar
  91. 91.
    Tang C, Chen V (2002) Nanofiltration of textile wastewater for water reuse. Desalination 143:11–20CrossRefGoogle Scholar
  92. 92.
    Chidambaram T, Noel M (2015) Impact of the dye molecule charge on recovery of concentrated salt solution from wastewaters containing dyes by nanofiltration. J Water Chem Technol 37:133–139CrossRefGoogle Scholar
  93. 93.
    Tang CY, Kwon YN, Leckie JO (2009) Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination 242:168–182CrossRefGoogle Scholar
  94. 94.
    Jiraratananon R, Sungpet A, Luangsowan P (2000) Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt. Desalination 130:177–183CrossRefGoogle Scholar
  95. 95.
    Wang L, Wang N, Zhang G, Ji S (2013) Covalent crosslinked assembly of tubular ceramicbased multilayer nanofiltration membranes for dye desalination. AIChE J 59:3834–3842CrossRefGoogle Scholar
  96. 96.
    Yu S, Chen Z, Cheng Q, Lu Z, Liu M, Gao C (2012) Application of thin-film composite hollow fiber membrane to submerged nanofiltration of anionic dye aqueous solutions. Sep Purif Technol 88:121–129CrossRefGoogle Scholar
  97. 97.
    Akbari A, Desclaux S, Rouch J, Remigy J (2007) Application of nanofiltration hollow fibre membranes, developed by photografting, to treatment of anionic dye solutions. J Membr Sci 297:243–252CrossRefGoogle Scholar
  98. 98.
    Han Y, Xu Z, Gao C (2013) Ultrathin graphene nanofiltration membrane for water purification. Adv Funct Mater 23:3693–3700CrossRefGoogle Scholar
  99. 99.
    Cheng S, Oatley DL, Williams PM, Wright CJ (2012) Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters. Water Res 46:33–42CrossRefGoogle Scholar
  100. 100.
    Sun SP, Hatton TA, Chan SY, Chung TS (2012) Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water. J Membr Sci 401:152–162CrossRefGoogle Scholar
  101. 101.
    Lee HHW, Chen G, Yue PL (2001) Integration of chemical and biological treatments for textile industry wastewater: a possible zero-discharge system. Water Sci Technol 44(5):75–83Google Scholar
  102. 102.
    Lin J, Ye W, Huang C, Tang YP, Zeng H, Yang H, Li J, Shen J, Van den Broeck R, Van Impe J, Volodin A, Van Haesendonck C, Sotto A, Luis P, Van der Bruggen B (2016) A comprehensive physico-chemical characterization of superhydrophilic nanofiltration membranes. J Membr Sci 490:690–702Google Scholar
  103. 103.
    Lin J, Ye W, Zeng H, Yang H, Luis P, Sotto A, Van der Bruggen B (2015) Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. J Membr Sci 477:183–193CrossRefGoogle Scholar
  104. 104.
    Lin J, Ye W, Zhong K, Shen J, Jullok N, Sotto A, Van der Bruggen B (2016) Enhancement of PES membrane doped by monodisperse stöber silica for water treatment. Eng Proc Proc Intens, ChemGoogle Scholar
  105. 105.
    Van der Bruggen B (2013) Integrated membrane separations for recycling of valuable wastewater streams: nanofiltration, membrane distillation and membrane crystallizers revisited. Ind Eng Chem Res 52(31):10335–10341CrossRefGoogle Scholar
  106. 106.
    Uzal N, Yilmaz L, Yetis U (2010) Nanofiltration and reverse osmosis for reuse of indigo dye rinsing waters. Sep Sci Technol 45(3):331–338CrossRefGoogle Scholar
  107. 107.
    Vergili I, Kaya Y, Sen U, Gonder ZB, Aydiner C (2012) Techno-economic analysis of textile dye bath wastewater treatment by integrated membrane processes under the zero liquid discharge approach. Resour Conserv Recycl 58:25–35CrossRefGoogle Scholar
  108. 108.
    Heubeck S, De Vos RM, Craggs R (2011) Potential contribution of the wastewater sector to energy supply. Water Sci Technol 63(8):1765–1771CrossRefGoogle Scholar
  109. 109.
    Lin J, Ye W, Huang J, Borrego Castillo R, Baltaru MC, Greydanus B, Balta S, Shen J, Vlad M, Sotto A, Luis P, Van der Bruggen B (2015) Toward resource recovery from textile wastewater: dye extraction, water and base/acid regeneration using a hybrid NF-BMED process. ACS Sust Chem Eng 3(9):1993–2001CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Chemical EngineeringProcess Engineering for Sustainable Systems (ProcESS), KU LeuvenLouvainBelgium
  2. 2.Department of Environmental EngineeringGebze Technical UniversityGebzeTurkey
  3. 3.School of Environment and Resources, Qi Shan CampusFuzhou UniversityFuzhouChina
  4. 4.Materials & Process Engineering (iMMC-IMAP)Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations