Membrane Operations for the Recovery of Valuable Metals from Industrial Wastewater

  • Marta Herrero
  • Eugenio BringasEmail author
  • María Fresnedo San Román
  • Inmaculada Ortiz
Part of the Green Chemistry and Sustainable Technology book series (GCST)


The development of separation technologies, which also permit the recovery of valuable compounds from industrial wastewaters, reports economic and environmental benefits. In particular, the selective recovery of metals from end-of-life products is an essential strategy to avoid the depletion of natural sources, especially for less abundant metals such as rare earths (REs) and platinum-group metals (PGMs). Although several technologies have been applied in the recovery of metals from wastes, solvent extraction reported the best performance in terms of selectivity when complex matrixes are treated. Regarding solvent extraction, the use of membrane contactors raises against the conventional contactors due to their diverse advantages such as the high interfacial area/volume ratio, the prevention of emulsion formation, the modular design that simplifies the process scale-up and the lower operation cost. This work evaluates the benefits of membrane-based solvent extraction technologies to recover metallic compounds from waste materials through three different cases of study: (i) zinc recovery from spent pickling solutions, (ii) PGMs recovery from depleted car catalytic converters and (iii) rare earths recovery from waste electrical and electronic devices.


Metals recovery Rare earths Platinum-group metals Zinc Selective recovery Solvent extraction 


  1. 1.
    Umland JB, Bellama JM (1999) General chemistry, 3rd edn. Brooks Cole Publishing Company, Pacific GroveGoogle Scholar
  2. 2.
    Whitten KW, Gailey KD, Davis RE (1988) General chemistry, 3rd edn. Saunders College Publishing Company, New YorkGoogle Scholar
  3. 3.
    Silberberg HS (2000) Chemistry: the molecular nature of matter and change, 2nd edn. McGraw Hill, New YorkGoogle Scholar
  4. 4.
    Barbalace K (2015) Periodic table of elements. Accessed 3 Dec 2015
  5. 5.
    European Parliament (2015) Recovery of rare earths from electronic wastes: an opportunityGoogle Scholar
  6. 6.
    Matthey J (precious metals management) (2015). Accessed 29 Oct 2015
  7. 7.
    IndexMundi (data portal) (2015) Accessed 29 Oct 2015
  8. 8.
    Metal Prices (2015) Accessed 29 Oct 2015
  9. 9.
  10. 10.
    IGME (2012) Instituto Geológico y Minero Español – Níquel.
  11. 11.
    MMTA (2015) Minor Metal Trade Association. Accessed 29 Oct 2015
  12. 12.
    USGS (2015) United States Geological Survey—mineral resources program Accessed 29 Oct 2015
  13. 13.
    Álvarez-Ayuso E (2009) Approaches for the treatment of waste streams of the aluminium anodizing industry. J Hazard Mater 164:409–414CrossRefGoogle Scholar
  14. 14.
    Tabak HH, Scharp R, Burckle J, Kawahara FK. Govind R (2003) Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation 14:423–436Google Scholar
  15. 15.
    Park SM, Yoo JC, Ji SW, Yang JS, Baek K (2015) Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH. Environ Sci Pollut Res 22:3013–3022CrossRefGoogle Scholar
  16. 16.
    Kumar Jha M, Gupta D, Kumar Choubey P, Kumar V, Jeong J, Lee J (2014) Solvent extraction of copper, zinc, cadmium and nickel from sulfate solution in mixer settler unit (MSU). Sep Purif Technol 122:119–127CrossRefGoogle Scholar
  17. 17.
    Hossain S, Bari F, Jamaludin SB, Hussin K, Kadir OA (2012) Selective extraction, separation and recovery of Cu(II) in presence of Zn(II) and Ni(II) from leach liquor of waste printed circuit board using microcapsules coated with Cyanex 272. Korean J Chem Eng 29(5):668–675CrossRefGoogle Scholar
  18. 18.
    Kumari Jha A, Kumar Jha M, Kumari A, Kumar Sahu S, Kumar V, Pandey BD (2013) Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant. Sep Purif Technol 104:160–166CrossRefGoogle Scholar
  19. 19.
    Fang D, Zhang R, Deng W, Li J (2012) Highly efficient removal of Cu(II), Zn(II), Ni(II) and Fe(II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent. Environ Technol 33(15):1709–1715CrossRefGoogle Scholar
  20. 20.
    Tang J, Steenari B (2015) Solvent extraction separation of copper and zinc from MSWI fly ash leachates. Waste Manage 44:147–154CrossRefGoogle Scholar
  21. 21.
    Li L, Zhai L, Zhang X, Lu J, Chen R, Wu F, Amine K (2014) Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. J Power Sources 262:380–385CrossRefGoogle Scholar
  22. 22.
    Rudnik E, Nikiel M (2007) Hydrometallurgical recovery of cadmium and nickel from spent Ni–Cd batteries. Hydrometallurgy 89:61–71CrossRefGoogle Scholar
  23. 23.
    Laso J, García V, Bringas E, Urtiaga AM, Ortiz I (2015) Selective recovery of zinc over iron from spent pickling wastes by different membrane-based solvent extraction process configurations. Ind Eng Chem Res 54:3218–3224CrossRefGoogle Scholar
  24. 24.
    Saurat M, Bringezu S (2008) Platinum group metal flows of Europe, Part 1. Global supply, use in industry, and shifting of environmental impacts. J Ind Ecol 12:5/6Google Scholar
  25. 25.
    Shin D, Park J, Jeong J, Kim B (2015) A biological cyanide production and accumulation system and the recovery of platinum-group metals from spent automotive catalysts by biogenic cyanide. Hydrometallurgy 158:10–18CrossRefGoogle Scholar
  26. 26.
    Butewicz A, Campos Gavilan K, Pestov AV, Yatluk Y, Trochimczuk AW, Guibal E (2010) Palladium and platinum sorption on a thiocarbamoyl-derivative of chitosan. J Appl Polym Sci 116:3318–3330Google Scholar
  27. 27.
    Binnemans K, Jones PT, Blanpain B, Gerven TV, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22CrossRefGoogle Scholar
  28. 28.
    Kim W, Kim B, Choi D, Oki T, Kim S (2010) Selective recovery of catalyst layer from supporting matrix of ceramic-honeycomb-type automobile catalyst. J Hazard Mater 183:29–34CrossRefGoogle Scholar
  29. 29.
    Benson M, Bennett CR, Harry JE, Patel MK, Cross M (2000) The recovery mechanism of platinum group metals from catalytic converters in spent automotive exhaust systems. Resour Conserv Recy 31:1–7CrossRefGoogle Scholar
  30. 30.
    Chassary P, Vincenta T, Sanchez Marcanob J, Macaskiec LE, Guibala E (2005) Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 76:131–147CrossRefGoogle Scholar
  31. 31.
    Kumar Jha M, Lee J, Kim M, Jeong J, Kim B, Kumar V (2013) Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: a review. Hydrometallurgy 133:23–32CrossRefGoogle Scholar
  32. 32.
    Jimenez de Aberasturi D, Pinedo R, Ruiz de Larramendi I, Ruiz de Larramendi JI, Rojo T (2011) Recovery by hydrometallurgical extraction of the platinum-group metals from car catalytic converters. Miner Eng 24:505–513CrossRefGoogle Scholar
  33. 33.
    Kramer J, Dhladhla NE, Koch KR (2006) Guanidinium functionalised silica-based anion exchangers significantly improve the selectivity of platinum group metal recovery from process solutions. Sep Purif Technol 49:181–185CrossRefGoogle Scholar
  34. 34.
    Upadhyay AK, Lee J, Kim E, Kim M, Kima B, Kumarc V (2013) Leaching of platinum group metals (PGMs) from spent automotive catalyst using electro-generated chlorine in HCl solution. J Chem Technol Biotechnol 88:1991–1999Google Scholar
  35. 35.
    Das N (2010) Recovery of precious metals through biosorption—a review. Hydrometallurgy 103:180–189CrossRefGoogle Scholar
  36. 36.
    Zhuang W, Fitts JP, Ajo-Franklin CM, Maes S, Alvarez-Cohen L, Hennebel T (2015) Recovery of critical metals using biometallurgy. Curr Opin Biotech 33:327–335CrossRefGoogle Scholar
  37. 37.
    Huang H, Huang C, Wu Y, Ding S, Liu N, Su D, Lv T (2015) Extraction of palladium(II) from nitric acid solutions with diglycolthioamide. Hydrometallurgy 156:6–11CrossRefGoogle Scholar
  38. 38.
    Jayakumar M, Venkatesan KA, Sudha R, Srinivasan TG, Vasudeva Rao PR (2011) Electrodeposition of ruthenium, rhodium and palladium from nitric acid and ionic liquid media: recovery and surface morphology of the deposits. Mater Chem Phys 128:141–150CrossRefGoogle Scholar
  39. 39.
    Sharma P, Bhardwaj D, Tomar R, Tomar R (2007) Recovery of Pd(II) and Ru(III) from aqueous waste using inorganic ion-exchanger J Radioanal Nucl Ch 274(2):281–286Google Scholar
  40. 40.
    Fujiwara K, Ramesh A, Maki T, Hasegawa H, Ueda K (2007) Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. J Hazard Mater 146:39–50CrossRefGoogle Scholar
  41. 41.
    Dobson RS, Burgess JE (2007) Biological treatment of precious metal refinery wastewater: a review. Miner Eng 20:519–532CrossRefGoogle Scholar
  42. 42.
    San Román MF, Bringas E, Ibañez R, Ortiz I (2010) Liquid membrane technology: fundamentals and review of its applications. J Chem Technol Biotechnol 85:2–10CrossRefGoogle Scholar
  43. 43.
    Hosseini SS, Bringas E, Tan NR, Ortiz I (2016) Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment: a review. J Water Process Eng 9:78–110CrossRefGoogle Scholar
  44. 44.
    Ritcey G, Ashbrook A (2006) Solvent extraction: principles and applications to process metallurgy. Elsevier, AmsterdamGoogle Scholar
  45. 45.
    Noble RD, Gin DL (2011) Perspective on ionic liquid and ionic liquid membranes. J Membr Sci 369:1–4CrossRefGoogle Scholar
  46. 46.
    Bringas E, San Romań MF, Urtiaga AM, Ortiz I (2013) Integrated use of liquid membranes and membrane contactors: enhancing the efficiency of L-L reactive separations. Chem Eng Process 67:120–129CrossRefGoogle Scholar
  47. 47.
    Krüger J, Reisener J, Reuter M, Richter K (2002) Metallurgy. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  48. 48.
    Moskalyk RR, Alfantazi AM (2003) Processing of vanadium: a review. Miner Eng 16(9):793–805CrossRefGoogle Scholar
  49. 49.
    Bringas E, San Romań MF, Urtiaga AM, Ortiz I (2012) Membrane contactors (NDSX and EPT): an innovative alternative for the treatment of effluents containing metallic pollutants. Inter J Environ Waste Manage 9:201–220CrossRefGoogle Scholar
  50. 50.
    Murthy ZVP, Choudhary A (2011) Application of nanofiltration to treat rare earth element (neodymium) containing water. J Rare Earths 10:974–978CrossRefGoogle Scholar
  51. 51.
    Vasudevan S, Sozhan G, Mohan S, Pushpavanam S (2005) An electrochemical process for the separation of cerium from rare earths. Hydrometallurgy 76(1–2):115–121CrossRefGoogle Scholar
  52. 52.
    Alguacil FJ, Alonso M, López FA, López-Delgado A, Padilla I, Tayibi H (2010) Pseudo-emulsion based hollow fiber with strip dispersion pertraction of iron(III) using (PJMTH+)2(SO42-) ionic liquid as carrier. Chem Eng J 157:366–372CrossRefGoogle Scholar
  53. 53.
    González R, Cerpa A, Alguacil FJ (2010) Nickel(II) removal by mixtures of Acorga M5640 and DP8R in pseudo-emulsion based hollow fiber with strip dispersion technology. Chemosphere 81:1164–1169CrossRefGoogle Scholar
  54. 54.
    Jaree A, Khunphakdee N (2011) Separation of concentrated platinum (IV) and rhodium (III) in acidic chloride solution via liquid-liquid extraction using try-octylamine. J Ind Eng Chem 17:243–247CrossRefGoogle Scholar
  55. 55.
    García V, Steeghs W, Bouten M, Ortiz I, Urtiaga A (2013) Implementation of an eco-innovative separation process for a cleaner chromium passivation in the galvanic industry. J Clean Prod 59:274–283CrossRefGoogle Scholar
  56. 56.
    Kim D, Powell LE, Delmau LH, Peterson ES, Herchenroeder J, Bhace RR (2015) Selective Extraction of rare earth elements from permanent magnet scraps with membrane solvent extraction. Environ Sci Technol 49:9452–9459CrossRefGoogle Scholar
  57. 57.
    PRTR (2015) Guía tecnológica de la metalurgia del Zinc. Directiva 96/61 relativa a la prevención y control integrados de la contaminación.
  58. 58.
    Csicsovszki G, Kékesi T, Török TI (2005) Selective recovery of Zn and Fe from spent pickling solutions by the combination of anion exchange and membrane electrowinning techniques. Hydrometallurgy 77:19–28CrossRefGoogle Scholar
  59. 59.
    Borges Mansur M, Ferreira Rocha SD, Silva Magalhães F, Santos Benedetto J (2008) Selective extraction of zinc(II) over iron(II) from spent hydrochloric acid pickling effluents by liquid–liquid extraction. J Hazard Mater 150:669–678CrossRefGoogle Scholar
  60. 60.
    Regel-Rosocka M (2010) A review on methods of regeneration of spent pickling solutions from steel processing. J Hazard Mater 177:57–69CrossRefGoogle Scholar
  61. 61.
    Samaniego H, San Román MF, Ortiz I (2006) Modelling of the extraction and back-extraction equilibria of zinc from spent pickling solutions. Sep Sci Technol 41(4):757–769CrossRefGoogle Scholar
  62. 62.
    Regel M, Sastre AM, Szymanowski J (2001) Recovery of zinc(II) from HCl spent pickling solutions by solvent extraction. Environ Sci Technol 35(3):630–635CrossRefGoogle Scholar
  63. 63.
    European Commission (2006) Reference document on best available techniques for the surface treatment of metals and plastics
  64. 64.
    Cierpiszewski R, Miesiac I, Regel-Rosocka M, Sastre AM, Szymanowski J (2002) Removal of zinc(II) from spent hydrochloric acid solutions from zinc hot galvanizing plants. Ind Eng Chem Res 41(3):598–603CrossRefGoogle Scholar
  65. 65.
    Ortiz I, Bringas E, San Romań MF, Urtiaga AM (2004) Selective separation of zinc and iron from spent pickling solutions by membrane-base solvent extraction: Process viability. Sep Sci Technol 39:2441–2455CrossRefGoogle Scholar
  66. 66.
    Samaniego H, San Román MF, Ortiz I (2007) Kinetics of zinc recovery from spent pickling effluents. Ind Eng Chem Res 46:907–912CrossRefGoogle Scholar
  67. 67.
    Carrera JA, Bringas E, San Romań MF, Ortiz I (2009) Selective membrane alternative to the recovery of zinc from hot-dip galvanizing effluents. J Membr Sci 326:672–680CrossRefGoogle Scholar
  68. 68.
    Carrera JA, Muñoz E, Bringas E, San Román MF, Ortiz I (2009) Influence of operational variables on the recovery of zinc from spent pickling effluents using the emulsion pertraction technology. Desalination 245:675–679CrossRefGoogle Scholar
  69. 69.
    Carrillo-Abad J, García-Gabaldoń M, Ortega E, Peŕez-Herranz V (2011) Electrochemical recovery of zinc from the spent pickling baths coming from the hot dip galvanizing industry. Potentiostatic operation. Sep Purif Technol 81:200–207CrossRefGoogle Scholar
  70. 70.
    Carrillo-Abad J, García-Gabaldoń M, Ortega E, Peŕez-Herranz V (2012) Recovery of zinc from spent pickling solutions using an electrochemical reactor in presence and absence of an anion-exchange membrane: Galvanostatic operation. Sep Purif Technol 98:366–374CrossRefGoogle Scholar
  71. 71.
    Carrillo-Abad J, García-Gabaldoń M, Ortiz-Gandara I, Bringas E, Urtiaga AM, Orti I, Peŕez-Herranz V (2015) Selective recovery of zinc from spent pickling baths by the combination of membrane-based solvent extraction and electrowinning technologies. Sep Purif Technol 151:232–242CrossRefGoogle Scholar
  72. 72.
    Rao CRM, Reddi GS (2000) Platinum group metals (PGM); occurrence, use and recent trends in their determination. Tr Anal Chem 19(9):565–586[73]Google Scholar
  73. 73.
    Bernardis FL, Grant RA, Sherrington DC (2005) A review of methods of separation of the platinum-group metals through their chloro-complexes. React Funct Polym 65:205–217CrossRefGoogle Scholar
  74. 74.
    Buchanan DL (1988) Platinum-group element exploration. Elsevier, LondonGoogle Scholar
  75. 75.
    Cabri LC (1981) Platinum-Group elements: mineralogy, geology, recovery. Can I Min Metal Petrol 23:83–150Google Scholar
  76. 76.
    Dong H, Zhao J, Chen J, Wu Y, Li B (2015) Recovery of platinum group metals from spent catalyst: a review. Int J Miner Process 145:108–113CrossRefGoogle Scholar
  77. 77.
    Barakat MA, EL-Mahdy GA, Hegazy M, Zahrah F (2009) Hydrometallurgical recovery of nano-palladium from spent catalyst. Open Min Proc J 2:31–36Google Scholar
  78. 78.
    Fontàs C, Salvadó V, Hidalgo M (2002) Separation and concentration of Pd, Pt, and Rh from automotive catalytic converters by combining two hollow-fiber liquid membrane systems. Ind Eng Chem Res 41:1616–1620CrossRefGoogle Scholar
  79. 79.
    Edwards RI, TeRiele WAM (1983) Handbook of solvent extraction. New YorkGoogle Scholar
  80. 80.
    Fuwa A (1987) Solvent extraction technology in recovery and refining of platinum group metals. Metall Rev MMIJ (Mining Metall Inst Jap) (0289-6214) 4(1):98Google Scholar
  81. 81.
    Warshawsky A (1987) Ion exchange and sorption processes in hydrometallurgy. Wiley, ChichesterGoogle Scholar
  82. 82.
    Grant RA (1989) The separation chemistry of rhodium and iridium. In: Proceedings of a Seminar of the International Precious Metals Institute: Scottsdale, AZ, pp 7–39Google Scholar
  83. 83.
    Kim CH, Woo SI, Jeon SH (2000) Recovery of platinum-group metals from recycled automotive catalytic converters by carbochloration. Ind Eng Chem Res 39:1185–1192CrossRefGoogle Scholar
  84. 84.
    Faisal M, Assuta Y, Daiman H, Fujiek (2008) Recovery of precios metals from spent automobile catalytic converters using supercritical carbón dioxide. Asia-Pac J Chem Eng 3:364–367Google Scholar
  85. 85.
    Alguacil FJ (1995) El refino de los metales del grupo del platino. Revista de Metalugia 31(4):246–255CrossRefGoogle Scholar
  86. 86.
    Renner H, Schlamp G, Kleinwächter I, Drost E, Lüschow HM, Tews P, Panster P, Diehl M, Lang J, Kreuzer T, Knödler A, Starz KA, Dermann K, Rothaut J, Drieselmann R, Peter C, Schiele R (2012) Platinum Group metals and compounds. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  87. 87.
    Jha MK, Kumar V, Singh RJ (2002) Solvent extraction of zinc from chloride solutions. Solvent Extr Ion Exc 20(3):389–405CrossRefGoogle Scholar
  88. 88.
    Alguacil FJ, Cobo A, Coedo AG, Dorado MT, Sastre A (1997) Extraction of platinum (IV) from hydrochloric acid solutions by amine alamine 304 in xylene. Estimation of interaction coefficient between PtCl62- and H+. Hydrometallurgy 44:203–212CrossRefGoogle Scholar
  89. 89.
    Chaikla D, Mungcharoen T, Jaree A (2007) Catalytic converters ICSW-22, Philadelphia, p 1211Google Scholar
  90. 90.
    Fontàs C, Salvadó V, Hidalgo M (1999) Solvent extraction of Pt(IV) by Aliquat 336 and its application to a solid supported liquid membrane system. Solvent Extr Ion Exch 17(1):149–162CrossRefGoogle Scholar
  91. 91.
    Kondo K (2000) Solvent extraction of precious metals with quaternary ammonium salts and its application to preparation of metal particles. Solvent Extr Res Dev 7:176Google Scholar
  92. 92.
    Lee JY, Kumar JR, Kim JS, Kim DJ, Yoon HS (2009) Extraction and separation of Pt(IV)/Rh(III) from acidic chloride solutions using Aliquat 336. J Ind Eng Chem 15:359–364CrossRefGoogle Scholar
  93. 93.
    Sumiko S, Yukako M, Hiroshi M (1999) Preparation of ammonium chloroplatinate by precipitation stripping of Pt IV-loaded Alamine 336 or TBP. Metall Mater Trans B 30:197–203CrossRefGoogle Scholar
  94. 94.
    Swain B, Jeong J, Kim SK, Lee JC (2010) Separation of platinum and palladium from chloride solution by solvent extraction using Alamine 300. Hydrometallurgy 104:1–7CrossRefGoogle Scholar
  95. 95.
    Resina M, Fontàs C, Palet C, Muñoz M (2006) Selective transport of platinum(IV) and palladium(II) through hybrid and activated composite membranes containing Aliquat 336. Desalination 200:100–102CrossRefGoogle Scholar
  96. 96.
    Fontàs C, Anticó E, Salvadó V, Valiente M, Hidalgo M (1997) Chemical pumping of rhodium by a supported liquid membrane containing aliquat 336 as carrier. Anal Chim Acta 346:199–206CrossRefGoogle Scholar
  97. 97.
    Pospiech B (2015) Highly efficient facilitated membrane transport of palladium(II) ions from hydrochloric acid solution through plasticizer membranes with cyanex 471X. Physicochem Probl Miner Process 51(1):281–291Google Scholar
  98. 98.
    Mueller SR, Wäger PA, Widmer R, Williams ID (2015) A geological reconnaissance of electrical and electronic waste as a source for rare earth metals. Waste Manage 45:226–234CrossRefGoogle Scholar
  99. 99.
    Tunsu C, Petranikova M, Gergorić M, Ekberg C, Retegan T (2015) Reclaiming rare earth elements from end-of-life products: a review of perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy 156:239–258CrossRefGoogle Scholar
  100. 100.
    Huang K, Li J, Xu Z (2009) A novel process for recovring valuable metals from waste nickel-cadmium batteries. Environ Sci Technol 43:8974–8978CrossRefGoogle Scholar
  101. 101.
    Uda T (2002) Recovery of raare earths from magnet sludge by FeCl2. Mater Trans 43:55–62CrossRefGoogle Scholar
  102. 102.
    Itoh M, Miura K, Machida K (2009) Novel rare earth recovery process on Nd-Fe-B magnet scrap by selective chlorination using NH4Cl. J Alloys Compd 477:484–487CrossRefGoogle Scholar
  103. 103.
    McGill I (2012) Rare earth elements. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  104. 104.
    Dziwinski E, Szymanowski J (1998) Composition of Cyanex® 923, Cyanex® 925, Cyanex® 921 and TOPO. Solvent Extr Ion Exch 16:1515–1525CrossRefGoogle Scholar
  105. 105.
    Virolainen S (2013) Hydromettallurgical recovery of valuable metals from secondary raw materials. Ph.D. thesis, Lappeenranta University of Technology, Lappeenranta, FinlandGoogle Scholar
  106. 106.
    Quinn J, Soldenhoff K, Stevens G (2014) Separation of rare earth elements using Cyanex 572. In: Proceedings of the 20th international solvent extraction conference, Wurtzburg, Germany 07–11 Sept 2014Google Scholar
  107. 107.
    Lee MS, Lee JY, Kim JS Lee GS (2005) Solvent extraction of neodymium ions from hydrochloric acid solution using PC88A and saponified PC88A. Sep Purif Technol 46(1–2):72–78Google Scholar
  108. 108.
    Li W, Wang X, Meng S, Li D, Xiong Y (2007) Extraction and separation of yttrium from the rare earths with sec.octylphnoxy acetic acid in chloride media. Sep Purif Technol 54(2):164–169Google Scholar
  109. 109.
    Horwitz EP, McAlister DR, Thakkar AH (2008) Synergistic enhancement of the extraction of trivalent lanthanides and actinides by tetra-(n-octyl)diglycolamide from chloride media. Solvent Extr Ion Exch 26(1):12–24CrossRefGoogle Scholar
  110. 110.
    Shimojo K, Kurahashi K, Naganawa H (2008) Extraction behavior of lanthandes using a diglycolamide derivative TODGA in ionic liquids. Dalton Trans 37:5083–5088CrossRefGoogle Scholar
  111. 111.
    Larsson K, Ekberg C, Odegaard-Jensen A (2012) Using Cyanex 923 for selective extraction in a high concentration chloride medium on nickel metal hydride battery waste. Hydrometallurgy 129:35–42CrossRefGoogle Scholar
  112. 112.
    Criscuoli A, Drioli E (2007) New metrics for evaluating the performance of membrane operations in the logic of process intensification. Ind Eng Chem Res 46:2268–2271CrossRefGoogle Scholar
  113. 113.
    Wannachod T, Mohdee V, Suren S, Ramakul P, Pancharoen U, Nootong K (2015) The separation of Nd(III) from mixed rare earth via hollow fiber supported liquid membrane and mass transfer analysis. J Ind Eng Chem 26:214–217CrossRefGoogle Scholar
  114. 114.
    Wannachod T, Leepipatpiboon N, Pancharoen U, Nootong K (2014) Separation and mass transport of Nd(III) from mixed rare earths via hollow fiber supported liquid membrane: experiment and modeling. Chem Eng J 248:158–167CrossRefGoogle Scholar
  115. 115.
    Ambare DN, Ansari SA, Anitha M, Kandwal P, Singh DK, Singh H, Mohapatra PK (2013) Non-dispersive solvent extraction of neodymium using a hollow fiber contactor: mass transfer and modeling studies. J Membr Sci 446:106–112CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Marta Herrero
    • 1
  • Eugenio Bringas
    • 1
    Email author
  • María Fresnedo San Román
    • 1
  • Inmaculada Ortiz
    • 1
  1. 1.Chemical and Biomolecular Engineering Department, E.T.S. de Ingenieros Industriales y de TelecomunicacionesUniversidad de CantabriaSantanderSpain

Personalised recommendations