Advertisement

Valuable Products Recovery from Wastewater in Agrofood by Membrane Processes

  • Silvia Álvarez-BlancoEmail author
  • José-Antonio Mendoza-Roca
  • María-José Corbatón-Báguena
  • María-Cinta Vincent-Vela
Chapter
Part of the Green Chemistry and Sustainable Technology book series (GCST)

Abstract

Agrofood industry is one of the most important and dynamic industrial sectors worldwide. However, it generates large volumes of wastewaters, which contain great amounts of valuable products. Such products have a wide range of outstanding properties such as antioxidant, anticarcinogenic, or antimicrobial effects. Therefore, significant research has been focused on the development and implementation of different techniques to recover those products from the wastewaters. In the last decades, the utilization of membrane processes has grown in interest since they are considered as ‘green processes’ and have no negative impact on the valuable properties of these products. This chapter reviews the different membrane separation processes used for the separation, purification, and fractionation of valuable compounds from agrofood wastewaters. Among them, this chapter highlights the recovery of polyphenols and proteins from the fruit and vegetables, dairy and fish and meat industries.

Keywords

Agrofood industry Valuable products Membrane processes Proteins Phenolic compounds 

References

  1. 1.
    Directive 2000/60/EC of the European parliament and of the council establishing a framework for the community action in the field of water policy (EU Water Framework Directive). Off J OJ L 327Google Scholar
  2. 2.
    Baldasso C, Barros TC, Tessaro IC (2011) Concentration and purification of whey proteins by ultrafiltration. Desalination 278:381–386CrossRefGoogle Scholar
  3. 3.
    Goulas A, Grandison AS (2008) Applications of membrane separations. In: Britz TJ, Robinson RK (eds) Advanced dairy science and technology. Blackwell Publishing, United KingdomGoogle Scholar
  4. 4.
    Acevedo Correa D (2010) Gelificación fría de las proteínas del lactosuero. ReCiTeIA 10:1–19Google Scholar
  5. 5.
    Edwards PB, Creamer LK, Jameson GB (2008) Chapter 6. Structure and stability of whey proteins. In: Thompson A, Boland M, Singh H (eds) Milk proteins: from expression to food. Academic Press Elsevier, USA, pp 163–203CrossRefGoogle Scholar
  6. 6.
    Chandan RC, Kilara A (eds) (2011) Dairy ingredients for food processing. Blackwell Publishing, USAGoogle Scholar
  7. 7.
    Jawad AH, Alkarkhi AFM, Jason OC, Mat EA, Nik NNA (2013) Production of the lactic acid from mango peel waste—factorial experiment. J King Saud Univ Sci 25:39–45Google Scholar
  8. 8.
    Ramchandran L, Vasiljevic T (2013) Chapter 9. Whey processing. In: Tamime AY (ed) Membrane processing: dairy and beverage applications. Blackwell Publishing, United Kingdom, pp 193–207Google Scholar
  9. 9.
    Madrid VA (ed) (1981) Modernas técnicas de aprovechamiento del lactosuero. Almansa, SpainGoogle Scholar
  10. 10.
    Corbatón-Báguena MJ (2015) Limpieza de membranas de ultrafiltración aplicadas en la industria alimentaria por medio de técnicas no convencionales y caracterización del ensuciamiento de las membranas. PhD thesis. Universitat Politècnica de València. doi: 10.4995/Thesis/10251/54841
  11. 11.
    Lucena ME, Álvarez S, Menéndez C, Riera FA, Álvarez R (2006) Beta-lactoglobulin removal from whey protein concentrates. Production of milk derivatives as a base for infant formulas. Sep Purif Technol 52:310–316CrossRefGoogle Scholar
  12. 12.
    Daufin G, Escudier J-P, Carrère H, Bérot S, Fillaudeau L, Decloux M (2001) Recent and emerging applications of membrane processes in the food and dairy industry. Trans IChemE 79:89–102Google Scholar
  13. 13.
    Anema SG (2014) The whey protein in milk: thermal denaturation, physical interactions and effects on the functional properties of milk. In: Taylor SL (ed) Milk proteins: from expression to food, 2nd edn. Elsevier, United KingdomGoogle Scholar
  14. 14.
    Steinhauer T, Hanély S, Bogendörfer K, Kulozik U (2015) Temperature dependent membrane fouling during filtration of whey and whey proteins. J Membr Sci 492:364–370CrossRefGoogle Scholar
  15. 15.
    Bird MR, Bartlett M (2002) Measuring and modelling flux recovery during the chemical cleaning of MF membranes for the processing of whey protein concentrate. J Food Eng 53:143–152CrossRefGoogle Scholar
  16. 16.
    Blanpain-Avet P, Migdal JF, Bénézech T (2009) Chemical cleaning of a tubular ceramic microfiltration membrane fouled with a whey protein concentrate suspension—characterization of hydraulic and chemical cleanliness. J Membr Sci 337:153–174CrossRefGoogle Scholar
  17. 17.
    Morin P, Pouliot Y, Jiménez-Flores R (2006) A comparative study of the fractionation of regular buttermilk and whey buttermilk by microfiltration. J Food Eng 77:521–528CrossRefGoogle Scholar
  18. 18.
    Kazemimoghadam M, Mohammadi T (2007) Chemical cleaning of ultrafiltration membranes in the milk industry. Desalination 204:213–218CrossRefGoogle Scholar
  19. 19.
    Arunkumar A, Etzel MR (2014) Fractionation of α-lactalbumin and β-lactoglobulin from bovine milk serum using staged, positively charged, tangential flow ultrafiltration membranes. J Membr Sci 454:488–495CrossRefGoogle Scholar
  20. 20.
    Metsämuuronen S, Nyström M (2009) Enrichment of α-lactalbumin from diluted whey with polymeric ultrafiltration membranes. J Membr Sci 337:248–256CrossRefGoogle Scholar
  21. 21.
    Konrad G, Kleinschmidt T, Lorenz C (2013) Ultrafiltration of whey buttermilk to obtain a phospholipid concentrate. Int Dairy J 30:39–44CrossRefGoogle Scholar
  22. 22.
    Huisman IH, Prádanos P, Hernández A (2000) The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration. J Membr Sci 179:79–90CrossRefGoogle Scholar
  23. 23.
    Corbatón-Báguena MJ, Álvarez-Blanco S, Vincent-Vela MC, Lora-García J (2015) Utilization of NaCl solutions to clean ultrafiltration membranes fouled by whey protein concentrates. Sep Purif Technol 150:95–101CrossRefGoogle Scholar
  24. 24.
    Luján-Facundo MJ, Mendoza-Roca JA, Cuartas-Uribe B, Álvarez-Blanco S (2013) Ultrasonic cleaning of ultrafiltration membranes fouled with BSA solution. Sep Purif Technol 120:275–281CrossRefGoogle Scholar
  25. 25.
    Cuartas-Uribe B, Alcaina-Miranda MI, Soriano-Costa E, Mendoza-Roca JA, Iborra-Clar MI, Lora-García J (2009) A study of separation of lactose from whey ultrafiltration permeate using nanofiltration. Desalination 241:244–255CrossRefGoogle Scholar
  26. 26.
    Pan K, Song Q, Wang L, Cao B (2011) A study of demineralization of whey by nanofiltration membrane. Desalination 267:217–221CrossRefGoogle Scholar
  27. 27.
    Chandrapala J, Chen GQ, Kezia K, Bowman EG, Vasiljevic T, Kentish SE (2016) Removal of lactate from acid whey using nanofiltration. J Food Eng 177:59–64CrossRefGoogle Scholar
  28. 28.
    Madaeni SS, Mansourpanah Y (2004) Chemical cleaning of reverse osmosis membranes fouled by whey. Desalination 161:13–24CrossRefGoogle Scholar
  29. 29.
    González MI, Álvarez S, Riera F, Álvarez R (2007) Economic evaluation of an integrated process for lactic acid production from ultrafiltered whey. J Food Eng 80:553–561CrossRefGoogle Scholar
  30. 30.
    Gernigon G, Schuck P, Jeantet R, Burling H (2011) Whey processing. demineralization. In: Fuquay JW (ed) Encyclopedia of dairy sciences, 2nd edn. Elsevier, USA, pp 738–743CrossRefGoogle Scholar
  31. 31.
    Goodall S, Grandison AS, Jauregi PJ, Proce J (2008) Selective separation of the major whey proteins using ion exchange membranes. J Dairy Sci 91:1–10CrossRefGoogle Scholar
  32. 32.
    Bazinet L, Ippersiel D, Mahdavi B (2004) Fractionation of whey proteins by bipolar membrane electroacidification. Innov Food Sci Emerging Technol 5:17–25CrossRefGoogle Scholar
  33. 33.
    Korhonen H (2009) Milk-derived bioactive peptides: from science to applications. J Funct Foods 1:177–187CrossRefGoogle Scholar
  34. 34.
    Korhonen H, Pihlanto A (2007) Technological options for the production of health-promoting proteins and peptides derived from milk and colostrums. Curr Pharm Des 13:829–843CrossRefGoogle Scholar
  35. 35.
    Gauthier SF, Poulit Y, Maubois JL (2006) Growth factors from bovine milk and colostrums: composition, extraction and biological activities. Lait 86:99–125CrossRefGoogle Scholar
  36. 36.
    Maubois JL, Fauquant J, Jouan P, Bourtourault M (2003) Method for obtaining a TGF-beta enriched protein fraction in activated form, protein fraction and therapeutic applications, PCT/WO 03/006500Google Scholar
  37. 37.
    Hossner KL, Yemm RS (2000) Improved recovery of insulin-like growth factors (IGFs) from bovine colostrums using alkaline diafiltration. Biotechnol Appl Biochem 32:161–166CrossRefGoogle Scholar
  38. 38.
    Simon A, Vandanjon L, Levesque G, Bourseau P (2002) Concentration and desalination of fish gelatine by ultrafiltration and continuous diafiltration processes. Desalination 144:313–318CrossRefGoogle Scholar
  39. 39.
    Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS (2012) Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J Food Sci Technol 49:278–293CrossRefGoogle Scholar
  40. 40.
    Saidi S, Deratani A, Belleville M-P, Amar RB (2014) Production and fractionation of tuna by-product protein hydrolysate by ultrafiltration and nanofiltration: Impact on interesting peptides fractions and nutritional properties. Food Res Intern 65:453–461CrossRefGoogle Scholar
  41. 41.
    Arvanitoyannis IS, Kassaveti A (2008) Fish industry waste: treatments, environmental impacts, current and potential uses. Int J Food Sci Technol 43:726–745CrossRefGoogle Scholar
  42. 42.
    Bárzana E, García-Garibay M (1994) Chapter 9. Production of fish protein concentrates. In: Martin AM (ed) Fisheries processing. Biotechnological applications. Springer Science, United Kingdom, pp 206–223Google Scholar
  43. 43.
    Afonso MD, Ferrer J, Bórquez R (2004) An economic assessment of proteins recovery from fish meal effluents by ultrafiltration. Trends Food Sci Technol 15:506–512CrossRefGoogle Scholar
  44. 44.
    Gómez-Juárez C, Castellanos R, Ponce-Noyola T, Calderón V, Figueroa J (1999) Protein recovery from slaughterhouse wastes. Biores Technol 70:129–133CrossRefGoogle Scholar
  45. 45.
    Afonso MD, Bórquez R (2002) Review of the treatment of seafood processing wastewaters and recovery of proteins therein by membrane separation processes—prospects of the ultrafiltration of wastewaters from the fish meal industry. Desalination 142:29–45CrossRefGoogle Scholar
  46. 46.
    Bourseau P, Massé A, Cros S, Vandanjon L, Jaouen P (2014) Recovery of aroma compounds from seafood cooking juices by membrane processes. J Food Eng 128:157–166CrossRefGoogle Scholar
  47. 47.
    Lo YM, Cao D, Argin-Soysal S, Wang J, Hahm T-S (2005) Recovery of protein from poultry processing wastewater using membrane ultrafiltration. Biores Technol 96:687–698CrossRefGoogle Scholar
  48. 48.
    Pérez-Gálvez R, Guadix EM, Bergé J-P, Guadix A (2011) Operation and cleaning of ceramic membranes for the filtration of fish press liquor. J Membr Sci 384:142–148CrossRefGoogle Scholar
  49. 49.
    Bialas W, Stangierski J, Konieczny P (2015) Protein and water recovery from poultry processing wastewater integrating microfiltration, ultrafiltration and vacuum membrane distillation. Int J Environ Sci Technol 12:1875–1888CrossRefGoogle Scholar
  50. 50.
    Søtoft LF, Martin Lizarazu J, Parjikolaei BR, Karring H, Christensen KV (2015) Membrane fractionation of herring marinade for separation and recovery of fats, proteins, amino acids, salt, acetic acid and water. J Food Eng 158:39–47CrossRefGoogle Scholar
  51. 51.
    Cros S, Lignot B, Jaouen P, Bourseau P (2006) Technical and economical evaluation of an integrated membrane process capable both to produce an aroma concentrate and to reject clean water from shrimp cooking juices. J Food Eng 77(3):697–707CrossRefGoogle Scholar
  52. 52.
    Erlund I (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nut Res 24:851–874CrossRefGoogle Scholar
  53. 53.
    Odeh RM, Cornish LA (1995) Natural antioxidants for the prevention of atherosclerosis. Pharmacotherapy 15:648–659CrossRefGoogle Scholar
  54. 54.
    Seifried EH, Anderson DE, Fisher EI, Milner JA (2007) A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18:567–579CrossRefGoogle Scholar
  55. 55.
    Garrido-Fernández A, Fernández-Díez M, Adams A (1997) Table olives: production and processing. Chapman and Hall, London, UK, p 15CrossRefGoogle Scholar
  56. 56.
    Azbar N, Bayram A, Filibeli A, Muezzinoglu A, Sengul F, Ozer A (2004) A review of waste management options in olive oil production. Crit Rev Environ Sci Technol 34:209–247CrossRefGoogle Scholar
  57. 57.
    Carrera-González MP, Ramírez-Expósito MJ, Mayas MD, Martínez-Martos JM (2013) Protective role of oleuropein and its metabolite hydroxytyrosol on cancer. Trends Food Sci Technol 31:92–99CrossRefGoogle Scholar
  58. 58.
    Charoenmprasert S, Mitchell A (2012) Factors influencing phenolic compounds in table olives (Olea europaea). J Agric Food Chem 60:7081–7095CrossRefGoogle Scholar
  59. 59.
    El-Abbassi A, Khayet M, Kiai H, Hafidi A, García-Payo MC (2013) Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation. Sep Purif Technol 104:327–332CrossRefGoogle Scholar
  60. 60.
    Cassano A, Conidi C, Drioli E (2011) Comparison of the performance of UF membranes in olive mill wastewaters treatment. Water Res 45:3197–3204CrossRefGoogle Scholar
  61. 61.
    Ferrer-Polonio E, Iborra-Clar A, Mendoza-Roca JA, Pastor-Alcañiz L (2016) Fermentation brines from Spanish style green table olives processing: treatment alternatives before recycling or recovery operations. J Chem Technol Biotechnol 91:131–137CrossRefGoogle Scholar
  62. 62.
    García-García P, López-López A, Moreno-Baquero JM, Garrido-Fernández A (2011) Treatment of wastewaters from the green table olive packaging industry using electro-coagulation. Chem Eng J 170:59–66CrossRefGoogle Scholar
  63. 63.
    Della Greca M, Previtera L, Temussi F, Zarrelli A (2004) Low-molecular-weight components of olive oil mill waste-waters. Phytochem Anal 15:184–188CrossRefGoogle Scholar
  64. 64.
    Chiavola A, Farabegoli G, Antonetti F (2014) Biological treatment of olive mill wastewater in a sequencing batch reactor. Biochem Eng J 85:81–88CrossRefGoogle Scholar
  65. 65.
    Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill wastewater (OMW) treatment: a review. J Chem Technol Biotechnol 81:1475–1485CrossRefGoogle Scholar
  66. 66.
    Turano E, Curcio S, De Paola MG, Calabrò V, Iorio G (2002) An integrated centrifugation–ultrafiltration system in the treatment of olive mill wastewater. J Membr Sci 209:519–531CrossRefGoogle Scholar
  67. 67.
    Russo C (2007) Anew membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW). J Membr Sci 288:239–246CrossRefGoogle Scholar
  68. 68.
    Cassano A, Conidi C, Giorno L, Drioli E (2013) Fractionation of olive mill wastewaters by membrane separation techniques. J Hazard Mat 248–249:185–193CrossRefGoogle Scholar
  69. 69.
    Bazzarelli F, Piacentini E, Poerio T, Mazzei R, Cassano A, Giorno L (2016) Advances in membrane operations for water purification and biophenols recovery/valorization from OMWWs. J Membr Sci 497:402–409CrossRefGoogle Scholar
  70. 70.
    García-Castelló E, Cassano A, Criscuoli A, Conidi C, Drioli E (2010) Recovery and concentration of polyphenols from olive mil wastewaters by integrated membrane system. Water Res 44:3883–3892CrossRefGoogle Scholar
  71. 71.
    Kopsidas GC (1992) Wastewaters from the preparation of table olives. Water Res 26:629–631CrossRefGoogle Scholar
  72. 72.
    García-Ivars J, Iborra-Clar MI, Alcaina-Miranda MI, Mendoza-Roca JA, Pastor-Alcañiz L (2015) Treatment of table olive processing wastewaters using novel photomodified ultrafiltration membranes as first step for recovering phenolic compounds. J Hazard Mat. 290:51–59CrossRefGoogle Scholar
  73. 73.
    Ferrer-Polonio E, Mendoza-Roca JA, Iborra-Clar A, Pastor-Alcañiz L (2016) Adsorption of raw and treated by membranes fermentation brines from table olives processing for phenolic compounds separation and recovery. J Chem Technol Biotechnol. 91(7):2094–2102Google Scholar
  74. 74.
    Giacobbo A, Bernardes AM, de Pinho MN (2013) Nanofiltration for the recovery of low molecular weight polysaccharides and polyphenols from winery effluents. Sep Sci Technol 48:2524–2530CrossRefGoogle Scholar
  75. 75.
    Giacobbo A, Prado do JM, Meneguzzi A, Bernardes AM, de Pinho MN (2015) Microfiltration for the recovery of polyphenols from winery effluents. Sep Purif Technol 143:12–18Google Scholar
  76. 76.
    Conidi C, Cassano A, García-Castelló E (2014) Valorization of artichoke wastewaters by integrated membrane process. Water Res 48:363–374CrossRefGoogle Scholar
  77. 77.
    Conidi C, Rodríguez-López AD, García-Castelló EM, Cassano A (2015) Purification of artichoke polyphenols by using membrane filtration and polymeric resins. Sep Purif Technol 144:153–161CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Silvia Álvarez-Blanco
    • 1
    Email author
  • José-Antonio Mendoza-Roca
    • 1
  • María-José Corbatón-Báguena
    • 1
  • María-Cinta Vincent-Vela
    • 1
  1. 1.Department of Chemical and Nuclear EngineeringUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations