Municipal Wastewater Treatment by Membrane Bioreactors

  • Aymere Awoke Assayie
  • Abaynesh Yihdego Gebreyohannes
  • Lidietta GiornoEmail author
Part of the Green Chemistry and Sustainable Technology book series (GCST)


While the population and therefore the demand for water keep increasing alarmingly, the type and quantity of water source remains the same. This leads the world to water scarcity. In this chapter, the need for wastewater recycling and stringent rules to control water pollution, instigated by water scarcity, is identified as the main driving force for the current and future increase in the use of advanced wastewater treatment systems. The types and sources of wastewater, water pollution, and pollutants along with the available treatment technologies are described. The need to continue to develop new strategies for water management is recommended. In most scenarios water reuse and/or recycling are deemed to be financially feasible approaches and hence are discussed as vital in this chapter. Municipal wastewater represents a large volume of wastewater released from different sources. The wastewater is rich in organic and inorganic compounds with high biodegradability. This chapter discusses Membrane Bioreactor (MBR) process with a special focus on biomass-based MBRs and its suitability for municipal wastewater treatment/reclamation in comparison with the existing conventional treatment technologies. Selected groups of microbes isolated and described in the literature as efficient for use in MBR systems are highlighted. The effort, desire, and market trends on MBR for municipal/domestic wastewater treatment and valorization are commentated by reviewing a wide range of projects funded by EU and other reports. It is also noted that, although there is progressive development and significant rise in the use of MBRs, severe membrane fouling and presence and retention of emerging micropollutants limited its further success. Remark is given to the importance of integrating MBR with emerging membrane operations and the simultaneous use of enzyme membrane reactors and mixed community of microbes to reclaim municipal wastewater with a desirable quality.


Emerging micropollutants Microbial degradation Municipal wastewater Membrane bioreactor (MBR) Wastewater treatment Water scarcity 


  1. 1.
    Jobling S, Nolan M, Tyler CR, Brighty G, Sumpter JP (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32(17):2498–2506CrossRefGoogle Scholar
  2. 2.
    Larsson DGJ, Adolfsson-Erici M, Parkkonen J, Pettersson M, Berg AH, Olsson PE, Förlin L (1999) Ethinyloestradiol—an undesired fish contraceptive? Aquat Toxicol 45(2–3):91–97. doi:
  3. 3.
    United Nations (2013) International decade for action “Water for Life” 2005–2015. United Nations Dep. Econ. Soc. AffGoogle Scholar
  4. 4.
    Engelman R, Halweil B, Nierenberg D (2002) Rethinking population, improving lives. State World 127–148Google Scholar
  5. 5.
    Hinrichsen D, Tacio H (2002) The coming freshwater crisis is already here. Finding the Source: The linkages between population and water. Woodrow Wilson International Center for Scholars, Washington, DC, ESCP Publication, SpringGoogle Scholar
  6. 6.
    Gleick PH (2003) Water use. Annu Rev Environ Resour 28(1):275–314CrossRefGoogle Scholar
  7. 7.
    Watkins K (2006) Human development report 2006. United Nations Development ProgrammeGoogle Scholar
  8. 8.
    Urgency U (2007) Water Caucus summary. World Water Council (WWC), Marseille, FranceGoogle Scholar
  9. 9.
    Tilton F, Benson WH, Schlenk D (2002) Evaluation of estrogenic activity from a municipal wastewater treatment plant with predominantly domestic input. Aquat Toxicol 61(3–4):211–224. doi:
  10. 10.
    Viala E (2008) Water for food, water for life a comprehensive assessment of water management in agriculture. Irrigat Drain Syst 22(1):127–129CrossRefGoogle Scholar
  11. 11.
    World Health Organization (2006) Meeting the MDG drinking water and sanitation target: the urban and rural challenge of the decadeGoogle Scholar
  12. 12.
    Henze M, Comeau Y (2008) Wastewater characterization. Biological wastewater treatment: principles, modelling and design. IWA Publishing, London, pp 33–52Google Scholar
  13. 13.
    Bazzarelli F, Poerio T, Mazzei R, D’Agostino N, Giorno L (2015) Study of OMWWs suspended solids destabilization to improve membrane processes performance. Sep Purif Technol 149:183–189. doi:
  14. 14.
    Gebreyohannes AY, Mazzei R, Giorno L (2016) Trends and current practices of olive mill wastewater treatment: Application of integrated membrane process and its future perspective. Sep Purif Technol 162:45–60. doi:
  15. 15.
    Tchobanoglous G, Burton FL (1991) Wastewater engineering. Management 7:1–4Google Scholar
  16. 16.
    Asano T (1987) Irrigation with reclaimed municipal wastewater. GeoJournal 15(3):273–282. doi: 10.1007/bf00213455 CrossRefGoogle Scholar
  17. 17.
    Bond RG, Straub CP (1974) Wastewater treatment and disposal, vol 2, 9th edn. CRC Press, ClevelandGoogle Scholar
  18. 18.
    Verlicchi P, Galletti A, Petrovic M, Barceló D (2010) Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrol 389(3–4):416–428. doi:
  19. 19.
    Snyder SA, Villeneuve DL, Snyder EM, Giesy JP (2001) Identification and quantification of estrogen receptor agonists in wastewater effluents. Environ Sci Technol 35(18):3620–3625. doi: 10.1021/es001254n CrossRefGoogle Scholar
  20. 20.
    Körner W, Spengler P, Bolz U, Schuller W, Hanf V, Metzger JW (2001) Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany. 2. Biological analysis. Environ Toxicol Chem 20(10):2142–2151CrossRefGoogle Scholar
  21. 21.
    Reller ME, Mendoza CE, Lopez MB, Alvarez M, Hoekstra RM, Olson CA, Baier KG, Keswick BH, Luby SP (2003) A randomized controlled trial of household-based flocculant-disinfectant drinking water treatment for diarrhea prevention in rural Guatemala. Am J Trop Med Hyg 69(4):411–419Google Scholar
  22. 22.
    Clasen T, Roberts I, Rabie T, Schmidt W, Cairncross S (2006) Interventions to improve water quality for preventing diarrhoea. Cochrane Database Syst Rev 3Google Scholar
  23. 23.
    Van Leeuwen F (2000) Safe drinking water: the toxicologist’s approach. Food Chem Toxicol 38:S51–S58CrossRefGoogle Scholar
  24. 24.
    Judd S (2003) Membranes for industrial wastewater recovery and re-use. Elsevier, AmsterdamGoogle Scholar
  25. 25.
    Mulder M (1996) Basic principles of membrane technologyGoogle Scholar
  26. 26.
    Bazzarelli F, Piacentini E, Poerio T, Mazzei R, Cassano A, Giorno L (2016) Advances in membrane operations for water purification and biophenols recovery/valorization from OMWWs. J Membr Sci 497:402–409. doi:
  27. 27.
    Gebreyohannes AY, Mazzei R, Curcio E, Poerio T, Drioli E, Giorno L (2013) Study on the in situ enzymatic self-cleansing of microfiltration membrane for valorization of olive mill wastewater. Ind Eng Chem Res 52(31):10396–10405. doi: 10.1021/ie400291w CrossRefGoogle Scholar
  28. 28.
    Garcia-Castello E, Cassano A, Criscuoli A, Conidi C, Drioli E (2010) Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system. Water Res 44(13):3883–3892. doi:
  29. 29.
    Gebreyohannes AY, Curcio E, Poerio T, Mazzei R, Di Profio G, Drioli E, Giorno L (2015) Treatment of olive mill wastewater by forward osmosis. Sep Purif Technol 147(0):292–302. doi:
  30. 30.
    Turano E, Curcio S, De Paola MG, Calabrò V, Iorio G (2002) An integrated centrifugation–ultrafiltration system in the treatment of olive mill wastewater. J Membr Sci 209(2):519–531. doi:
  31. 31.
    Ravazzini AM, van Nieuwenhuijzen AF, van der Graaf JHMJ (2005) Direct ultrafiltration of municipal wastewater: comparison between filtration of raw sewage and primary clarifier effluent. Desalination 178(1–3):51–62. doi:
  32. 32.
    Qin J-J, Oo MH, Lee H, Kolkman R (2004) Dead-end ultrafiltration for pretreatment of RO in reclamation of municipal wastewater effluent. J Membr Sci 243(1–2):107–113. doi:
  33. 33.
    Baker RW (2000) Membrane technology. Wiley Online Library, HobokenCrossRefGoogle Scholar
  34. 34.
    Yoon Y, Westerhoff P, Snyder SA, Wert EC (2006) Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J Membr Sci 270(1–2):88–100. doi:
  35. 35.
    Baker RW (2004) Reverse osmosis. In: Membrane technology and applications. Wiley, New York, pp 191–235. doi: 10.1002/0470020393.ch5
  36. 36.
    Radjenović J, Petrović M, Ventura F, Barceló D (2008) Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res 42(14):3601–3610. doi:
  37. 37.
    Snyder SA, Adham S, Redding AM, Cannon FS, DeCarolis J, Oppenheimer J, Wert EC, Yoon Y (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202(1–3):156–181. doi:
  38. 38.
    Oppenheimer J, Stephenson R, Burbano A, Liu L (2007) Characterizing the passage of personal care products through wastewater treatment processes. Water Environ Res: Res Publ Water Environ Fed 79(13):2564–2577CrossRefGoogle Scholar
  39. 39.
    Le-Clech P, Chen V, Fane TAG (2006) Fouling in membrane bioreactors used in wastewater treatment. J Membr Sci 284(1–2):17–53. doi:
  40. 40.
    Atkinson S (2006) Research studies predict strong growth for MBR markets. Membr Technol 2006(2):8–10CrossRefGoogle Scholar
  41. 41.
    Buttiglieri G, Malpei F, Daverio E, Melchiori M, Nieman H, Ligthart J (2005) Denitrification of drinking water sources by advanced biological treatment using a membrane bioreactor. Desalination 178(1–3):211–218. doi:
  42. 42.
    Yoon S-H (2015) Membrane bioreactor processes: principles and applications. CRC Press, ClevelandGoogle Scholar
  43. 43.
    Radjenović J, Matošić M, Mijatović I, Petrović M, Barceló D (2008) Membrane bioreactor (MBR) as an advanced wastewater treatment technology. In: Barceló D, Petrovic M (eds) Emerging contaminants from industrial and municipal waste: removal technologies. Springer, Berlin, pp 37–101. doi: 10.1007/698_5_093
  44. 44.
    Koltuniewicz AB (2015) Submerged membrane bioreactor. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin, pp 1–4. doi: 10.1007/978-3-642-40872-4_559-4
  45. 45.
    Prince RC (2010) Bioremediation of marine oil spills. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2617–2630. doi: 10.1007/978-3-540-77587-4_194
  46. 46.
    Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18(3):257–266. doi:
  47. 47.
    Mrozik A, Piotrowska-Seget Z, Labuzek S (2003) Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Polish J Environ Stud 12(1)Google Scholar
  48. 48.
    Seeger M, Cámara B, Hofer B (2001) Dehalogenation, denitration, dehydroxylation, and angular attack on substituted biphenyls and related compounds by a biphenyl dioxygenase. J Bacteriol 183(12):3548–3555CrossRefGoogle Scholar
  49. 49.
    Qiu X, Zhong Q, Li M, Bai W, Li B (2007) Biodegradation of p-nitrophenol by methyl parathion-degrading Ochrobactrum sp. B2. Int Biodeterior Biodegradation 59(4):297–301CrossRefGoogle Scholar
  50. 50.
    Sun W, Chen Y, Liu L, Tang J, Chen J, Liu P (2010) Conidia immobilization of T-DNA inserted Trichoderma atroviride mutant AMT-28 with dichlorvos degradation ability and exploration of biodegradation mechanism. Biores Technol 101(23):9197–9203CrossRefGoogle Scholar
  51. 51.
    Ramakrishnan B, Megharaj M, Venkateswarlu K, Sethunathan N, Naidu R (2011) Mixtures of environmental pollutants: effects on microorganisms and their activities in soils. Springer, BerlinGoogle Scholar
  52. 52.
    Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3(2):351–368. doi: 10.1007/bf00129093 CrossRefGoogle Scholar
  53. 53.
    Head IM, Jones DM, Roling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4(3):173–182CrossRefGoogle Scholar
  54. 54.
    Kaszycki P, Koloczek H (2002) Biodegradation of formaldehyde and its derivatives in industrial wastewater with methylotrophic yeast Hansenula polymorpha and with the yeast-bioaugmented activated sludge. Biodegradation 13(2):91–99. doi: 10.1023/a:1020423517235 CrossRefGoogle Scholar
  55. 55.
    Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275. doi:
  56. 56.
    Muga HE, Mihelcic JR (2008) Sustainability of wastewater treatment technologies. J Environ Manage 88(3):437–447. doi:
  57. 57.
    Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s Aquatic Species Program: biodiesel from algae, vol 328. National Renewable Energy Laboratory GoldenGoogle Scholar
  58. 58.
    Uusitalo J (1996) Algal carbon uptake and the difference between alkalinity and high pH (“alkalinization”), exemplified with a pH-drift experiment. Scientia Marina 60:129–134Google Scholar
  59. 59.
    Craggs RJ, McAuley PJ, Smith VJ (1997) Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res 31(7):1701–1707. doi:
  60. 60.
    Rose JB, Dickson LJ, Farrah SR, Carnahan RP (1996) Removal of pathogenic and indicator microorganisms by a full-scale water reclamation facility. Water Res 30(11):2785–2797. doi:
  61. 61.
    Rosenberger S, Laabs C, Lesjean B, Gnirss R, Amy G, Jekel M, Schrotter JC (2006) Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment. Water Res 40(4):710–720. doi:
  62. 62.
    Cicek N, Suidan MT, Ginestet P, Audic JM (2003) Impact of soluble organic compounds on permeate flux in an aerobic membrane bioreactor. Environ Technol 24(2):249–256. doi: 10.1080/09593330309385556 CrossRefGoogle Scholar
  63. 63.
    Radjenović J, Petrović M, Barceló D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43(3):831–841. doi:
  64. 64.
    Cartinella JL, Cath TY, Flynn MT, Miller GC, Hunter KW, Childress AE (2006) Removal of natural steroid hormones from wastewater using membrane contactor processes. Environ Sci Technol 40(23):7381–7386. doi: 10.1021/es060550i CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Aymere Awoke Assayie
    • 1
    • 2
  • Abaynesh Yihdego Gebreyohannes
    • 1
  • Lidietta Giorno
    • 1
    Email author
  1. 1.Institute on Membrane TechnologyNational Research Council of ItalyRendeItaly
  2. 2.Department of BiologyVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations