Sustainability and How Membrane Technologies in Water Treatment Can Be a Contributor

  • Subhas K. SikdarEmail author
  • Alessandra Criscuoli
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Water treatment technologies inherit the environmental, economic, and societal burdens either from polluted natural sources for potable water, or from domestic sewer water for municipal wastewater treatment plants, or from various industrial processing plants that produce highly contaminated wastewater. Application of various membrane technologies for wastewater has been growing because they enjoy relative advantage over other technologies in terms of sustainability. This advantage mainly emanates from economic benefits, ease of operation and safety. This chapter discusses what sustainability means for wastewater treatment and what specific sustainability advantages membrane processes can demonstrate. Applicable sustainability indicators are identified for various membrane technologies that can tackle a large number of wastewater problems.


Sustainability indicators Sustainability assessment Membrane technologies Wastewater treatment 


  1. 1.
    Nickson R, McArthur J, Burgess W et al (1998) Arsenic poisoning in Bangladesh groundwater. Nature 395:338CrossRefGoogle Scholar
  2. 2.
    Ötleş S, Çağındı Ö (2010) Health importance of arsenic in drinking water and food. Env Geochem Health 32:367–371CrossRefGoogle Scholar
  3. 3.
    Flanagan SV, Johnston RB, Zheng Y (2012) Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation. Bull World Health Organ 90:839–846CrossRefGoogle Scholar
  4. 4.
    EPA Report (2004) EPA 832-R-04-001: primer for municipal wastewater treatment systems.
  5. 5.
    Asano T, Levine AD (1996) Wastewater reclamation, recycling and reuse: past, present, and future. Water Sci Techn 33(10–11):1–14Google Scholar
  6. 6.
    Sikdar SK, Atimtay A (2011) Security of industrial supply and management. Springer, HeidelbergGoogle Scholar
  7. 7.
    The World Bank (2015) Accessed 6 Oct 2015
  8. 8.
    Kumar S (2013) The looming treat of water scarcity. Accessed 17 Mar 2016
  9. 9.
    AQUASTAT (2014) Accessed 17 Mar 2016
  10. 10.
    Climate Institute (2015), Accessed 6 Oct 2015
  11. 11.
    WCED, Our Common Future (1987) Oxford University Press, Oxford, UK. Accessed 6 Oct 2015
  12. 12.
    Fet A (2003) Eco-efficiency reporting exemplified by case studies. Clean Techn Env Pol 5(5):232–237Google Scholar
  13. 13.
    Sikdar SK, Sengupta D, Harten P (2012) More on aggregating multiple indicators into a single index for sustainability analyses. Clean Techn Env Pol 14(5):765–773CrossRefGoogle Scholar
  14. 14.
    Mukherjee R, Sengupta D, Sikdar S (2013) Parsimonious use of indicators for evaluating sustainability systems with multivariate statistical analyses. Clean Techn Env Pol 15(4):1–8CrossRefGoogle Scholar
  15. 15.
    Santos SF, Brandi HS (2015) Application of the GUM approach to estimate uncertainties in sustainability systems. Clean Techn Env Pol 18(1). doi: 10.1007/s10098-015-1029-3
  16. 16.
    Brandi HS, Daroda RJ, Olinto AC (2014) The use of the Canberra metrics to aggregate metrics to sustainability. Clean Techn Env Pol 16(5):911–920CrossRefGoogle Scholar
  17. 17.
    Semiat R (2008) Energy demands in desalination processes. Env Sci & Techn 42(22):8193–8201CrossRefGoogle Scholar
  18. 18.
    Wolf PH, Siverns S, Monti S (2005) UF membranes for RO desalination pretreatment. Desal 182:293–300CrossRefGoogle Scholar
  19. 19.
    Pearce GK (2007) The case for UF/MF pretreatment to RO in seawater applications. Desal 203:286–295CrossRefGoogle Scholar
  20. 20.
    Knops F, van Hoof S, Futselaar H et al (2007) Economic evaluation of a new ultrafiltration membrane for pretreatment of seawater reverse osmosis. Desal 203:300–306CrossRefGoogle Scholar
  21. 21.
    Vedavyasan CV (2007) Pretreatment trends-an overview. Desal 203:296–299Google Scholar
  22. 22.
    Ben-Dov E, Ben-David E, Messalem R, Herzberg M, Kushmaro A (2014) Biofilm formation on RO membranes: the impact of seawater pretreatment. Desal Water Treat 1–8Google Scholar
  23. 23.
    Wisniewski C (2007) Membrane bioreactor for water reuse. Desalination 203:15–19CrossRefGoogle Scholar
  24. 24.
    Zuthi MFR, Ngo HH, Guo WS (2012) Modelling bioprocesses and membrane fouling in membrane bioreactor (MBR): a review towards finding an integrated model framework. Biores Technol 122:119–129CrossRefGoogle Scholar
  25. 25.
    Choi JH, Fukushi K, Yamamoto K (2007) A submerged nanofiltration membrane bioreactor for domestic wastewater treatment: the performance of cellulose acetate nanofiltration membranes for long-term operation. Sep Purif Techn 52(3):470–477CrossRefGoogle Scholar
  26. 26.
    Leiknes T (2009) Wastewater treatment by membrane bioreactors. In: Drioli E, Giorno L (eds) Membrane operations: innovative separations and transformations. WILEY-VCH, Weinheim, pp 363–395CrossRefGoogle Scholar
  27. 27.
    Figoli A, Hoinkis J, Bundschuh J (2016) Membrane technologies for water treatment. Removal of toxic trace elements with emphasys on arsenic, fluoride and uranium. CRC Press Taylor & Francis Group, LondonGoogle Scholar
  28. 28.
    Shih MC (2005) An overview of arsenic removal by pressure driven membrane processes. Desalination 172:85–97CrossRefGoogle Scholar
  29. 29.
    Figoli A, Cassano A, Criscuoli A, Mozumder MSI, Uddin MT, Islam MA, Drioli E (2010) Influence of operating parameters on the arsenic removal by nanofiltration. Water Res 44:97–104CrossRefGoogle Scholar
  30. 30.
    Cassano A, Conidi C, Ruby-Figuero R et al (2015) A two-step nanofiltration process for the production of phenolic-rich fractions from artichoke aqueous extracts. Int J Mol Sci 16(4):8968–8987CrossRefGoogle Scholar
  31. 31.
    Russo C (2007) A new membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW). J Membr Sci 288:239–246CrossRefGoogle Scholar
  32. 32.
    Drioli E, Criscuoli A, Curcio E (2006) Membrane contactors: fundamentals, applications and potentialities. Membrane science and technology series, vol 11. Elsevier, AmsterdamGoogle Scholar
  33. 33.
    LiquiCel (2015) Accessed 20 Nov 2015
  34. 34.
    Criscuoli A, Carnevale MC, Mahmoudi H et al (2011) Membrane contactors for the oxygen and pH control in desalination. J Membr Sci 376:207–213CrossRefGoogle Scholar
  35. 35.
    Alkhudhiri A, Darwish N, Hilal N (2012) Membrane distillation: a comprehensive review. Desalination 287:2–18CrossRefGoogle Scholar
  36. 36.
    Khayet M, Matsuura T (2011) Membrane distillation: principles and applications. Elsevier, AmsterdamGoogle Scholar
  37. 37.
    Qu D, Wang J, Hou D et al (2009) Experimental study of arsenic removal by direct contact membrane distillation. J Haz Mater 163:874–879CrossRefGoogle Scholar
  38. 38.
    Pal P, Manna AK (2010) Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes. Water Res 44:5750–5760CrossRefGoogle Scholar
  39. 39.
    Criscuoli A, Bafaro P, Drioli E (2013) Vacuum membrane distillation for purifying waters containing arsenic. Desalination 323:17–21CrossRefGoogle Scholar
  40. 40.
    Khan EU, Martin AR (2014) Water purification of arsenic-contaminated drinking water via air gap membrane distillation (AGMD). Period Polytech Mech Eng 58(1):47–53CrossRefGoogle Scholar
  41. 41.
    Méricq J-P, Laborie S, Cabassud C (2010) Vacuum membrane distillation of seawater reverse osmosis Brines. Water Res 44:5260–5273Google Scholar
  42. 42.
    Drioli E, Di Profio G, Curcio E (2012) Progress in membrane crystallization. Current Opin Membr Eng 1:178–182CrossRefGoogle Scholar
  43. 43.
    Redondo J, Busch M, De Witte J-P (2003) Boron removal from seawater using FILMTECHTM high rejection SWRO membranes. Desalination 156:229–238CrossRefGoogle Scholar
  44. 44.
    Criscuoli A, Rossi E, Cofone F et al (2010) Boron removal by membrane contactors: the water that purifies water. Clean Techn Env Pol 12(1):53–61CrossRefGoogle Scholar
  45. 45.
    Cassano A, Conidi C, Ruby-Figuero R (2014) Recovery of flavonoids from orange press liquor by an integrated membrane process. Membr (Basel) 4(3):509–524Google Scholar
  46. 46.
    Van der Bruggen B (2013) Integrated membrane separation processes for recycling of valuable wastewater streams: nanofiltration, membrane distillation and membrane crystallizers revisited. Ind Eng Chem Res 52:10335–10341CrossRefGoogle Scholar
  47. 47.
    Criscuoli A, Drioli E (2007) New metrics for evaluating the performance of membrane operations in the logic of process intensification. Ind Eng Chem Res 46:2268–2271CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.U.S. Environmental Protection AgencyCincinnatiUSA
  2. 2.Institute on Membrane Technology (ITM-CNR)Rende (CS)Italy

Personalised recommendations