Skip to main content

Distribution Modeling of Batch Forging Processes

  • Chapter
  • First Online:
Modeling, Analysis and Control of Hydraulic Actuator for Forging
  • 593 Accesses

Abstract

An effective model of batch forging processes is crucial in order to ensure the quality conformance control of batch productions. However, obtaining this model has proven difficult due to a variety of the raw forgings produced by manufacturing error, material variation, and geometric defects, etc. In this chapter, an online probabilistic extreme learning machine (ELM) is proposed to model batch forging processes. A probabilistic ELM is first developed to extract the distribution information of the batch forging processes from data. The stochastic property of the batch forging processes is then derived and processed. On this basis, a strategy is further developed to update the distribution model as new forging process data are collected. As a result, the model built is able to represent the distribution behavior of the batch forging processes well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X.J. Lu, W. Zou, M.H. Huang, K. Deng, A process/shape-decomposition modeling method for deformation force estimation in complex forging processes. Int. J. Mech. Sci. 90, 190–199 (2015)

    Article  Google Scholar 

  2. X.J. Lu, M.H. Huang, System decomposition based multi-level control for hydraulic press machine. IEEE Tran. Ind. Electron. 59(4), 1980–1987 (2012)

    Article  Google Scholar 

  3. J. Beddoes, M.J. Bibbly, Principles of metal manufacturing process (Elsevier Butterworth-Heinemann, Burlington, 2014)

    Google Scholar 

  4. Z.P. Lin, Engineering Computation of Deformation Force Under Forging (Mechanical Industry Press, China, 1986)

    Google Scholar 

  5. O. Pantalé, B. Gueye, Influence of the constitutive flow law in FEM simulation of the radial forging process. J. Eng. 2013(1-3), 1845–1858 (2013)

    Google Scholar 

  6. J. Chen, K. Chandrashekhara, V.L. Richards, S.N. Lekakh, Three-dimensional nonlinear finite element analysis of hot radial forging process for large diameter tubes. Mater. Manuf. Processes 25(7), 669–678 (2010)

    Article  Google Scholar 

  7. J.M. Berg, F.W. Grath, A. Chaudhary, S.S. Banda, Optimal Open-Loop Ram Velocity Profiles for Isothermal Forging: A Variational Approach. Proceedings of the American Control Conference IEEE Xplore (vol. 1, issue no. 4, 1998), pp. 150–154

    Google Scholar 

  8. X.J. Lu, B. Fan, M.H. Huang, A novel LS-SVM modeling method for a hydraulic press forging process with multiple localized solutions. IEEE Trans. Industr. Inform. 11(3), 663–670 (2015)

    Article  Google Scholar 

  9. G. Shen, D. Furrer, Manufacturing of aerospace forgings. J. Mater. Process. Technol. 98(2), 189–195 (2000)

    Article  Google Scholar 

  10. S.J. Cho, J.C. Lee, Y.H. Jeon, J.W. Jeon, The Development of a Position Conversion Controller for Hydraulic Press Systems. International conference on robotics and biomimetics, 2009, pp. 2019–2022

    Google Scholar 

  11. Y. Xie, Y. Tan, R. Dong, Nonlinear modeling and decoupling control of XY micropositioning stages with piezoelectric actuators. IEEE/ASME Trans. Mechatron. 18(3), 821–832 (2013)

    Article  Google Scholar 

  12. R.A.S. Fernandes, I.N. da Silva, M. Oleskovicz, Load profile identification interface for consumer online monitoring purposes in smart grids. IEEE Trans. Ind. Inform. 9(3), 1507–1517 (2013)

    Article  Google Scholar 

  13. H.T. Lin, T.J. Liang, S.M. Chen, Estimation of battery state of health using probabilistic neural network. IEEE Trans. Ind. Inform. 9(2), 679–685 (2013)

    Article  Google Scholar 

  14. X. Sun, L. Chen, Z. Yang, H. Zhu, Speed-sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer. IEEE/ASME Trans. Mechatron. 18(4), 1357–1366 (2013)

    Article  Google Scholar 

  15. F. Ortega-Zamorano, J.M. Jerez, L. Franco, FPGA implementation of the C-Mantec neural network constructive algorithm. IEEE Trans. Ind. Inform. 10(2), 1154–1161 (2014)

    Article  Google Scholar 

  16. Z. Liu, H.X. Li, A spatiotemporal estimation method for temperature distributed in lithium ion batteries. IEEE Trans. Ind. Inform. 10(4), 2300–2307 (2014)

    Article  Google Scholar 

  17. J.A.K. Suykens, T.V. Gestel, J.D. Brabanter et al., Least squares support vector machines. Int. J. Circuit Theory Appl. 27(6), 605–615 (2002)

    Article  MATH  Google Scholar 

  18. G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)

    Article  Google Scholar 

  19. C. Wan, Z. Xu, P. Pinson, Z.Y. Dong, K.P. Wong, Probabilistic forecasting of wind power generation using extreme learning machine. IEEE Trans. Power Syst. 29(3), 1033–1044 (2014)

    Article  Google Scholar 

  20. G.B. Huang, L. Chen, C.K. Siew, Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  21. Y. Xu, Z.Y. Dong, Z. Xu, K. Meng, K.P. Wong, An intelligent dynamic security assessment framework for power systems with wind power. IEEE Trans. Ind. Inform. 8(4), 995–1003 (2012)

    Article  Google Scholar 

  22. G.B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. A Publ. IEEE Syst. Man Cybern. Soc. 42(2), 513–529 (2012)

    Article  Google Scholar 

  23. N.Y. Liang, G.B. Huang, P. Saratchandran, N. Sundararajan, A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423 (2006)

    Article  Google Scholar 

  24. H.X. Li, J.L. Yang, G. Zhang, B. Fan, Probabilistic support vector machines for classification of noise affected data. Inf. Sci. 221(2), 60–71 (2013)

    Article  Google Scholar 

  25. C.K. Qi, H.X. Li, X. Zhang, X. Zhao, S. Li, F. Gao, Time/space-separation-based SVM modeling for nonlinear distributed parameter processes. Ind. Eng. Chem. Res. 50(1), 332–341 (2010)

    Article  Google Scholar 

  26. H.J. Choi, J.K. Allen, A metamodeling approach for uncertainty analysis of nondeterministic systems. J. Mech. Des. 131(4), 041008 (2009)

    Article  Google Scholar 

  27. I. Rivals, L. Personnaz, Constructure of confidence intervals for neural networks based on least squares estimation. Neural Netw. 13(4-5), 463–484 (2000)

    Article  Google Scholar 

  28. C. Mencar, G. Castellano, A.M. Fanelli, Deriving prediction intervals for neuro-fuzzy networks. Math. Comput. Model. 42(7-8), 719–726 (2005)

    Article  MATH  Google Scholar 

  29. P.K. Wong, H.C. Wong, C.M. Vong, Online time-sequence incremental and decremental least squares support vector machines for engine air-ratio prediction. Int. J. Engine Res. 13(1), 28–40 (2012)

    Article  Google Scholar 

  30. K. De Brabanter, J. De Brabanter, J.A. Suykens, B. De Moor, Approximate confidence and prediction intervals for least squares support vector regression. IEEE Trans. Neural Netw. 22(1), 110–120 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjiang Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X., Huang, M. (2018). Distribution Modeling of Batch Forging Processes. In: Modeling, Analysis and Control of Hydraulic Actuator for Forging. Springer, Singapore. https://doi.org/10.1007/978-981-10-5583-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5583-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5582-9

  • Online ISBN: 978-981-10-5583-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics