Volatiles in the Rhizosphere: Bioprospecting for Sustainable Agriculture and Food Security

  • Shyamalina Haldar
  • Sanghamitra SenguptaEmail author


Volatile organic compounds are low molecular weight lipophilic molecules with low boiling points and an appreciable vapor pressure under ambient conditions and constitute a small proportion of the total number of metabolites produced by living organisms. Volatiles are important aromatic compounds found in foods that evoke gustatory response in humans and animals. In addition they have important role in mediating communication between living organisms. Due to their roles as signaling molecules, within and between organisms, studies with regard to structural and functional diversities of these compounds are essential for an improved understanding of cellular and organismal communications in living systems. Since plant–microbe interactions are one of the most fascinating ecological phenomena that help to sustain the food cycle, ecological balance, and environmental stability, this chapter highlights the diversity of volatiles present in the plant rhizosphere. The rhizovolatiles discussed here include those produced by plants as well as by microorganisms inhabiting the rhizosphere. This chapter focuses on the role of these volatiles in the establishment of successful association between plants and other organisms and their beneficial effects on plant growth and development. This will value-add to our present understanding of the chemical cues defining the complexity and dynamism of rhizosphere functioning. At the end, this synthesis emphasizes on the potentiality of these volatiles for sustainable agriculture and food production to ensure food security.


Ecology Foods Plant–microbe interactions Rhizosphere Signaling Volatiles 


  1. Abdullah AA, Altaf-Ul-Amin M, Ono N et al (2015a) Development and mining of a volatile organic compound database. Biomed Res Int 2015:139254. doi: 10.1155/2015/139254 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abdullah AA, Altaf-Ul-Amin M, Nishioka T et al (2015b) Analysis of volatile metabolites emitted by various species to reveal their roles in chemical ecology and healthcare. Paper presented at 2nd international conference of biomedical engineering (ICoBE) at Penang, 30th–31st March, 2015. pp 1–6. doi: 10.1109/ICoBE.2015.7235881
  3. Aviles-Garcia ME, Flores-Cortez I, Hernández-Soberano C et al (2016) The plant growth-promoting rhizobacterium Arthrobacter agilis UMCV2 endophytically colonizes Medicago truncatula. Rev Argent Microbiol 48(4):342–346. doi: 10.1016/j.ram.2016.07.004 PubMedGoogle Scholar
  4. Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7(1):79–85. doi: 10.4161/psb.7.1.18418 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Becker C, Desneux N, Monticelli L et al (2015) Effects of abiotic factors on HIPV-mediated interactions between plants and parasitoids. Biomed Res Int 2015:342982. doi: 10.1155/2015/342982 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berendsen RL, van Verk MC, Stringlis IA et al (2015) Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics 16:539. doi: 10.1186/s12864-015-1632-z CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18. doi: 10.1146/annurev.cellbio.16.1.1 CrossRefPubMedGoogle Scholar
  8. Chen F, Al-Ahmad H, Joyce B (2009) Within-plant distribution and emission of sesquiterpenes from Copaifera officinalis. Plant Physiol Biochem 47(11–12):1017–1023. doi: 10.1016/j.plaphy.2009.07.005 CrossRefPubMedGoogle Scholar
  9. De Vrieze M, Pandey P, Bucheli TD et al (2015) Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents. Front Microbiol 6:1295. doi: 10.3389/fmicb.2015.01295 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dicke M, van Loon JJ, Soler R (2009) Chemical complexity of volatiles from plants induced by multiple attack. Nat Chem Biol 5(5):317–324. doi: 10.1038/nchembio.169 CrossRefPubMedGoogle Scholar
  11. Dong L, Hou Y, Li F et al (2015) Characterization of volatile aroma compounds in different brewing barley cultivars. J Sci Food Agric 95(5):915–921. doi: 10.1002/jsfa.6759 CrossRefPubMedGoogle Scholar
  12. Dong F, Fu X, Watanabe N et al (2016) Recent advances in the emission and functions of plant vegetative volatiles. Molecules 21(2):124. doi: 10.3390/molecules21020124 CrossRefPubMedGoogle Scholar
  13. Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dudareva N, Negre F, Nagegowda DA et al (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417440CrossRefGoogle Scholar
  15. Elton CS (1927) Animal ecology. William Clowes and Sons Ltd, Great BritainGoogle Scholar
  16. Fall R, Karl T, Hansel A et al (1999) Volatile organic compounds emitted after leaf wounding: on-line analysis by proton transfer-reaction mass spectrometry. J Geophys Res 104:15963–15974. doi: 10.1029/1999JD900144 CrossRefGoogle Scholar
  17. Farag MA, Zhang H, Ryu CM (2013) Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol 39(7):1007–1018. doi: 10.1007/s10886-013-0317-9 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Frost CJ, Mescher MC, Carlson JE et al (2008) Why do distance limitations exist on plant-plant signaling via airborne volatiles? Plant Signal Behav 3(7):466–468CrossRefPubMedPubMedCentralGoogle Scholar
  19. Goldstein AH, Galbally IE (2007) Known and unknown organic constituents in the Earth’s atmosphere. Environ Sci Technol 41(5):1514–1521CrossRefPubMedGoogle Scholar
  20. Gols R (2014) Direct and indirect chemical defences against insects in a multitrophic framework: plant chemical defences against insect. Plant Cell Environ 37(8):1741–1752. doi: 10.1111/pce.12318 CrossRefPubMedGoogle Scholar
  21. Han SH, Lee SJ, Moon JH et al (2006) GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant-Microbe Interact 19(8):924–930. doi: 10.1094/MPMI-19-0924 CrossRefPubMedGoogle Scholar
  22. Hol WHG, Garbeva P, Hordijk C et al (2015) Non-random species loss in bacterial communities reduces antifungal volatile production. Ecology 96:2042–2048. doi: 10.1890/14-2359.1 CrossRefPubMedGoogle Scholar
  23. Holopainen JK, Blande JD (2012) Molecular plant volatile communication. Adv Exp Med Biol 739:17–31. doi: 10.1007/978-1-4614-1704-0_2 CrossRefPubMedGoogle Scholar
  24. Kai M, Effmert U, Berg G et al (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187(5):351–360. doi: 10.1007/s00203-006-0199-0 CrossRefPubMedGoogle Scholar
  25. Kai M, Effmert U, Piechulla B (2016) Bacterial-plant-interactions: approaches to unravel the biological function of bacterial volatiles in the rhizosphere. Front Microbiol 7:108. doi: 10.3389/fmicb.2016.00108 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151. doi: 10.3389/fpls.2015.00151 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kergunteuil A, Dugravot S, Danner HJ et al (2015) Characterizing volatiles and attractiveness of five brassicaceous plants with potential for a ‘push-pull’ strategy toward the cabbage root fly, Delia radicum. Chem Ecol 41(4):330–339. doi: 10.1007/s10886-015-0575-9 CrossRefGoogle Scholar
  28. Kwan G, Charkowski AO, Barak JD (2013) Salmonella enterica suppresses Pectobacterium carotovorum subsp. carotovorum population and soft rot progression by acidifying the microaerophilic environment. MBio 4(1):e00557–e00512. doi: 10.1128/mBio.00557-12 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Liberles SD (2014) Mammalian pheromones. Annu Rev Physiol 76:151–175. doi: 10.1146/annurev-physiol-021113-170334 CrossRefPubMedGoogle Scholar
  30. Meldau DG, Meldau S, Hoang LH et al (2013) Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp. B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25:2731–2747CrossRefPubMedPubMedCentralGoogle Scholar
  31. Moore JG, Jessop LD, Osborne DN (1987) Gas-chromatographic and mass-spectrometric analysis of the odor of human feces. Gastroenterology 93(6):1321–1329CrossRefPubMedGoogle Scholar
  32. Mumm R, Dicke M (2010) Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can J Zool 88(7):628–667CrossRefGoogle Scholar
  33. Neveu N, Grandgirard J, Nenon JP et al (2002) Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L. J Chem Ecol 28(9):1717–1732CrossRefPubMedGoogle Scholar
  34. Ninkovic V (2003) Volatile communication between barley plants affects biomass allocation. J Exp Bot 54(389):1931–1939CrossRefPubMedGoogle Scholar
  35. Ode PJ (2013) Plant defenses and parasitoid chemical ecology. In: Wajnberg E, Colazza S (eds) Chemical ecology of insect parasitoids. Wiley-Blackwell, LondonGoogle Scholar
  36. Ortíz-Castro R, Martínez-Trujillo M, López-Bucio J (2008) N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31(10):1497–1509. doi: 10.1111/j.1365-3040.2008.01863.x CrossRefPubMedGoogle Scholar
  37. Park YS, Dutta S, Ann M et al (2015) Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem Biophys Res Commun 461(2):361–365. doi: 10.1016/j.bbrc.2015.04.039 CrossRefPubMedGoogle Scholar
  38. Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269. doi: 10.1038/nrm3314 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Peñaflor MF, Bento JM (2013) Herbivore-induced plant volatiles to enhance biological control in agriculture. Neotrop Entomol 42(4):331–343. doi: 10.1007/s13744-013-0147-z CrossRefPubMedGoogle Scholar
  40. Peñuelas J, Asensio D, Tholl D et al (2014) Biogenic volatile emissions from the soil. Plant Cell Environ 37(8):1866–1891. doi: 10.1111/pce.12340 CrossRefPubMedGoogle Scholar
  41. Philippot L, Raaijmakers JM, Lemanceau P et al (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799. doi:10.1038/nrmicro3109 nrmicro3109CrossRefPubMedGoogle Scholar
  42. Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5(3):237–243CrossRefPubMedGoogle Scholar
  43. Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311(5762):808–811. doi: 10.1126/science.1118510 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rasmann S, Kollner TG, Degenhardt J (2005) Recruitment of entomopathogenic nematodes by insect- damaged maize roots. Nature 434:732–737CrossRefPubMedGoogle Scholar
  45. Rowan DD (2011) Volatile metabolites. Metabolites 1(1):41–63. doi: 10.3390/metabo1010041 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ryu CM, Farag MA, Hu CH et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100(8):4927–4932. doi: 10.1073/pnas.0730845100 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ryu CM, Farag MA, Hu CH et al (2004a) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026. doi: 10.1104/pp.103.026583 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ryu CM, Murphy JF, Mysore KS et al (2004b) Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J 39(3):381–392CrossRefPubMedGoogle Scholar
  49. Schenkel D, Lemfack MC, Piechulla B et al (2015) A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. Front Plant Sci 6:707. doi: 10.3389/fpls.2015.00707 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schmidt R, Etalo DW, deJager V et al (2015) Microbial small talk: volatiles in fungal-bacterial interactions. Front Microbiol 6:1495. doi: 10.3389/fmicb.2015.01495 PubMedGoogle Scholar
  51. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology (2nd). Oxford University Press, Oxford. 9780198525950Google Scholar
  52. Schulz-Bohm K, Zweers H, de Boer W (2015) A fragrant neighborhood: volatile mediated bacterial interactions in soil. Front Microbiol 6:1212. doi: 10.3389/fmicb.2015.01212 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schwarz J, Gries R, Hillier K et al (2009) Phenology of semiochemical-mediated host foraging by the western boxelder bug, Boisea rubrolineata, an aposematic seed predator. J Chem Ecol 35(1):58–70. doi: 10.1007/s10886-008-9575-3 CrossRefPubMedGoogle Scholar
  54. Slaymaker DH, Navarre DA, Clark D et al (2002) The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci U S A 99:11640–11645. doi: 10.1073/pnas.182427699 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Song GC, Ryu CM (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14(5):9803–9819. doi: 10.3390/ijms14059803 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Steeghs M, Bais HP, de Gouw J et al (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135(1):47–58CrossRefPubMedPubMedCentralGoogle Scholar
  57. Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int 2013:863240. doi: 10.1155/2013/863240 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tzin V, Galili G (2010) New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant 3(6):956–972. doi: 10.1093/mp/ssq048 CrossRefPubMedGoogle Scholar
  59. van Dam NM, Samudrala D, Harren FJ et al (2012) Real-time analysis of sulfur-containing volatiles in Brassica plants infested with root-feeding Delia radicum larvae using proton-transfer reaction mass spectrometry. AoB Plants:pls021. doi: 10.1093/aobpla/pls021
  60. Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73(17):5639–5641. doi: 10.1128/AEM.01078-07 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Vlot AC, Liu PP, Cameron RK et al (2008) Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56:445–456. doi: 10.1111/j.1365-313X.2008.03618.x CrossRefPubMedGoogle Scholar
  62. Wei G, Tian P, Zhang F et al (2016) Integrative analyses of nontargeted volatile profiling and transcriptome data provide molecular insight into VOC diversity in cucumber plants (Cucumis sativus). Plant Physiol 172(1):603–618. doi: 10.1104/pp.16.01051 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yi HS, Ahn YR, Song GC et al (2016) Impact of a bacterial volatile 2,3-Butanediol on Bacillus subtilis rhizosphere robustness. Front Microbiol 7:993. doi: 10.3389/fmicb.2016.00993 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zamioudis C, Korteland J, Van Pelt JA et al (2015) Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J 84(2):309–322. doi: 10.1111/tpj.12995 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of MicrobiologyGoa UniversityTaleigao PlateauIndia
  2. 2.Department of BiochemistryUniversity of CalcuttaKolkataIndia

Personalised recommendations