Skip to main content

Microbial Volatiles in Defense

  • Chapter
  • First Online:
Book cover Volatiles and Food Security

Abstract

Microbes are versatile, dynamic, and the most adaptive entities occurring in nature, and these properties enable them to strive in almost any conceivable environment. These are loaded with the variety of compounds having potential to cope up with such harsh conditions. Among the diversity of compounds, the important one is volatile compounds; these are light molecular weight, low vapor pressure compounds that easily disperse in environment, plant, and microbes and trigger metabolic and physiological responses that confer microbial defense and induce systemic resistance in plants. Basic chromatography and mass spectrometry techniques enable us to understand the chemical structure and function of these fascinating molecules. In addition to this, modern OMICS methods giving opportunity to deep insight of microbial diversity and strengthen the concept of volatile compounds function by providing real-time pictures of their expression and signaling. Incorporation of computational tools with molecular biology techniques incredibly creates a reservoir of knowledge-based database of volatile compounds’ structure, function, diversity, signaling, and even prediction through statistical tools. Hence, we are closer to decipher the significance of microbial volatile compounds in plants and microbes defense as well, and basic understanding, computational approaches, and intellectual input can definitely provide some fruitful findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angel Contreras-Cornejo H, Ias-Rodriguez L, Faro-Cuevas R, Lopez Bucio J (2014) Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol Plant Microbe Interact 27:503–514. doi:10.1094/MPMI-09-130265-R

    Article  Google Scholar 

  • Aziz M, Nadipalli RK, Xie X, Sun Y, Surowiec K, Zhang J-L, ParĂ© PW (2016) Augmenting sulfur metabolism and herbivore defense in Arabidopsis by bacterial volatile signaling. Front Plant Sci 7:458

    Article  PubMed  PubMed Central  Google Scholar 

  • Bezerra TKA, AraĂşjo ARR, Arcanjo NMO, da Silva FLH, Queiroga RCRE, Madruga MS (2015) Optimization of the HSSPME-GC/MS technique for the analysis of volatile compounds in caprine Coalho cheese using response surface methodology. Food Sci Technol Campinas 36(1):103–110

    Google Scholar 

  • Bjurman J, Nordstrand E, Kristensson J (1998) Growth-phase-relatedproduction of potential volatile-organic tracer compounds by moulds on wood. Indoor Air 7:2–7

    Article  Google Scholar 

  • Boland G, Hall R (1994) Index of plant hosts to Sclerotinia sclerotiorum. Can J Microbiol 16:93–108

    Google Scholar 

  • Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, Mark TD (2008) On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol 74(7):2179–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaurasiaa B, Pandeya A, Palnib LMS, Trivedia P, Kumara B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160:75–81

    Article  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Am Phytopathol Soc eXtra 21(8):1067–1075

    CAS  Google Scholar 

  • Danaei M, Baghizadeh A, Pourseyedi S, Amini J, Yaghoobi MM (2014) Biological control of plant fungal diseases using volatile substances of Streptomyces griseus. Eur J Exp Biol 4(1):334–339

    Google Scholar 

  • Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelava R et al (2011) Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. J Appl Microbiol 110:341–352

    Article  CAS  PubMed  Google Scholar 

  • Dharni S, Sanchita MA, Samad A, Srivastava SK, Sharma A, Patra DD (2014) Purification, characterization, and in vitro activity of 2,4-di-tert-butylphenol from Pseudomonas monteilii PsF84: conformational and molecular docking studies. J Agric Food Chem., 2014 62(26):6138–6146

    Article  CAS  PubMed  Google Scholar 

  • Drilling K, Dettner K (2009) Electrophysiological responses of four fungivorous coleoptera to volatiles of Trametes versicolor: implications for host selection. Chemoecology 19:109–115. doi:10.1007/s00049-009-0015-9

    Article  CAS  Google Scholar 

  • Elkahoui S, DjĂ©bali N, Karkouch I, Ibrahim AH, Kalai L, Bachkovel S, Tabbene O, Limam F (2014) Mass spectrometry identification of antifungal lipopetides from Bacillus sp. BCLRB2 against Rhizoctoniasolani and Sclerotiniasclerotiorum. Prikl Biokhim Mikrobiol 50:184–188

    CAS  PubMed  Google Scholar 

  • Faraga MA, Ryu CM, Sumner LW, Pare PW (2006) GC–MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67. (2006:2262–2268

    Article  Google Scholar 

  • Farag MA, Ryu C-M, Sumner LW, andParĂ©, P. W. (2013) GC–MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268. doi:10.1016/j.phytochem

  • Fernandoa WGD, Ramarathnama R, Krishnamoorthy AS, Savchuk SC (2004) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  Google Scholar 

  • Fernando WGD, Ramarathnam R, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Ferreira GL, dos Santos DN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20:13384–13421

    Article  CAS  PubMed  Google Scholar 

  • Fialho MB, Toffano L, Pedroso MP, Augusto F, Pascholati SF (2010) Volatile organic compounds produced by Saccharomyces cerevisiae inhibit the in vitro development of Guignardia citricarpa, the causal agent of citrus black spot. World J Microbiol Biotechnol 26:925–932. doi:10.1007/s11274-0090255-4

    Article  CAS  Google Scholar 

  • Fialho MB, de Moraes MHD, Tremocoldi AR, Pascholati SF (2011) Potential of antimicrobial volatile organic compounds to control Sclerotinia sclerotiorum in bean seeds. Pesq Agrop Bras Bras 46(2):137–142

    Article  Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerber NN, Lechevalier HA (1965) Geosmin, an earthy-smelling substance isolated from actinomycetes. Appl Microbiol 13(6):935–938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgio A, De Stradis A, Lo Cantore P, Iacobellis NS (2015) Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Front Microbiol 6:1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton-Kemp T, Newman M, Collins R et al (2005) Production of the long-chain alcohols octanol, decanol, and dodecanol by Escherichia coli Curr. Microbiol 51:826

    Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haq IU, Zhang M, Yang P, Van Elsas JD (2014) The interactions of bacteria with fungi in soil: emerging concepts. Adv Appl Microbiol 89:185–215

    Article  PubMed  Google Scholar 

  • Hegde S, Bhadri G, Narsapur K, Koppal S, Oswal P et al (2013) Statistical optimization of medium components by response surface methodology for enhanced production of bacterial cellulose by Gluconacetobacter persimmonis. J Bioprocess Biotech 4:142

    Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2007) Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. J Gen Plant Pathol 73:35–37. doi:10.1007/s10327-006-0314-8

  • Law J, Zsoldos Z, Simon A, Reid D, Liu Y et al (2009) Route designer: a retrosynthetic analysis tool utilizing automated retrosynthetic rule generation. J Chem Inf Model 49:593–602

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Farag MA, Park HB, Kloepper JW, Lee SH et al (2012) Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS One 7(11):e48744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Bienfait B, Sacher O, Gasteiger J, Siezen RJ et al (2014) Combining chemoinformatics with bioinformatics: in silico prediction of bacterial flavor forming pathways by a chemical systems biology approach “Reverse Pathway Engineering”. PLoS One 9(1):e84769

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin CH, Nielsen DR, Solomon KV, Prather KL (2009) Synthetic metabolism: engineering biology at the protein and pathway scales. Chem Biol 16:277–286

    Article  CAS  PubMed  Google Scholar 

  • Mercier J, Jimenez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscodoralbus. Postharv Biol Technol 31:1–8. doi:10.1016/j.postharvbio.2003.08.004

    Article  Google Scholar 

  • Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A (2011) Fusariumoxysporum and its bacterial consortium promote lettuce growth andexpansin A5 gene expression through microbial volatile organic compound(MVOC) emission. FEMS Microbiol Ecol 76:342–351. doi:10.1111/j.1574-6941.2011.01051.x

    Article  CAS  PubMed  Google Scholar 

  • Mitchell AM, Strobel GA, Moore E, Sears J (2010) Volatiles antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156:270–277

    Article  CAS  PubMed  Google Scholar 

  • Naznin HA, Kiyohara D, Kimura M, Miyazawa M, Shimizu M, Hyakumachi M (2014a) Systemic resistance induced by volatile organic compound semitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One 9:e86882. doi:10.1371/journal.pone.0086882

    Article  PubMed  PubMed Central  Google Scholar 

  • Naznin HA, Kiyohara D, Kimura M, Miyazawa M, Shimizu M et al (2014b) Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS One 9(1):e86882

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagans E, Font X, Sanchez A (2006) Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. J Hazard Mater 131:179e186

    Article  Google Scholar 

  • Raza W, Ling N, Yang L, Huang Q, Shen Q (2016) Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9

    Google Scholar 

  • Rice S, Koziel JA (2015) Characterizing the smell of marijuana by odor impact of volatile compounds: an application of simultaneous chemical and sensory analysis. PLoS One 10(12):e0144160

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, ParĂ© PW et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu C-M, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026. PMID:14976231; http://dx.doi.org/10.1104/pp.103.026583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang MK, Kim KD (2012) The volatile-producing Flavobacteriumjohnsoniae strain GSE09 shows biocontrol activity against Phytophthoracapsici in pepper. J. Appl. Microbiol. 113:383–398. doi:10.1111/j.1365-2672.2012.05330.x

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Cordovez V, de Boer W, Raaijmakers J, Garbeva P (2015) Volatile affairs in microbial interactions. ISME J. doi:10.1038/ismej.2015.42

  • Schoen HR, Peyton BM, Knighton WB (2016) Rapid total volatile organic carbon quantification from microbial fermentation using a platinum catalyst and proton transfer reaction-mass spectrometry. AMB Express 6:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharifi R, Ryu C-M (2016) Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? Front Microbiol 7:196. PMID:26941721; http://dx.doi.org/10.3389/fmicb.2016.00196

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharifi R, Ahmadzade M, Behboudi K, Ryu C-M (2013) Role of Bacillus subtilis volatiles in induction of systemic resistance in Arabidopsis. Iran J Plant Prot Sci 44:91–101

    Google Scholar 

  • Strobel, G., Singh, S. K., Riyaz-Ul-Hassan, S., Mitchell, A. M., Geary, B., and Sears, J. (2011). An endophytic/pathogenic phomasp from creosote bush producingbiologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320, 87–94. doi: 10.1111/j.1574-6968.2011.02297.x

  • Tarkka MT, Piechulla B (2007) Aromatic weapons: truffles attack plants by the production of volatiles. New Phytol 175:383–386

    Article  Google Scholar 

  • Tellez MR, Schrader KK, Kobaisy M (2001) Volatile components of the cyanobacterium Oscillatoria perornata (Skuja). J Agric Food Chem 49:5989–5992

    Article  CAS  PubMed  Google Scholar 

  • Thakeow P, Angeli S, Weissbecker B, Schuetz S (2008) Antennal and behavioral responses of Cis boleti to fungal odor of Trametes gibbosa. Chem Senses 33:379–387. doi:10.1093/chemse/bjn005

    Article  CAS  PubMed  Google Scholar 

  • Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C et al (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 49:2474–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usha Rani M, Rastogi NK, Appaiah KA (2011) Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter Hanenii UAC09 using coffee cherry husk extract-an agro industry waste. J Microb Biot 21:739–745

    Article  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant pathogens interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Wang C, Wang Z, Qiao X, Li Z, Li F, Chen M et al (2013) Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiol Lett 341:45–51. doi:10.1111/1574-6968.12088

    Google Scholar 

  • Yuan Z, Chen Y, Xu B, Zhang C (2012) Current perspectives on the volatile-producing fungal endophytes. Crit Rev Biotechnol 32:363–373. doi:10.3109/07388551.2011.651429

    Article  CAS  Google Scholar 

  • Zhou C, Li Z, Yu D (2010) Bacillus megaterium strain XTBG34 promotesplant growth by producing 2-pentylfuran. J Microbiol 48:460–466. doi:10.1007/s12275-010-0068-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Arya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Monika, Sarim, K.M., Arya, S.S., Devi, S., Kaur, V., Singla, A. (2017). Microbial Volatiles in Defense. In: Choudhary, D., Sharma, A., Agarwal, P., Varma, A., Tuteja, N. (eds) Volatiles and Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-5553-9_4

Download citation

Publish with us

Policies and ethics