Predicting Binding Affinity Based on Docking Measures for Spinocerebellar Ataxia: A Study

  • P. R. AshaEmail author
  • M. S. Vijaya
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 77)


An obsessive stipulation impairs the regular function or structure of an organ in humans. Spinocerebellar ataxia disorder is a hereditary genetic disorder which is originated by the massive number of sequence variants found in large sets of genes. The mutation in the genes causes many of these disorders. There are certainly no effective drugs to treat those disorders. There are many types of spinocerebellar ataxia, and a better knowledge is required to forecast binding affinity. Binding affinity is crucial to screen the drugs for spinocerebellar ataxia disorder. Accurate identification of binding affinities is a profoundly demanding task. To overcome this issue, a new approach is to be designed in identifying the binding affinity effectively. Due to rapid growth of biological data, there is an increase in the processing time and cost efficiency. This paves the way for challenges in computing. The purpose of machine learning is to excavate beneficial knowledge in distinct to corpus of information and data by constructing effective feasible designs. In this paper, a preface to spinocerebellar ataxia, conventional and innovative strategies involved in predicting binding affinity are discussed.


Proteins Protein structure Homology modeling Docking and affinity 


  1. 1.
    Weiss, T.C.: Ataxia Spinocerebellar: SCA Facts and Information (2010)Google Scholar
  2. 2.
    Whaley, N.R., Fujioka, S., Wszolek, Z.K.: Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics (2011). doi:
  3. 3.
    Bird, T.D.: Hereditary Ataxia Overview, March 3 (2016)Google Scholar
  4. 4.
    Bishop, A., de Beer, T.A., Joubert, F.: Protein homology modelling and its use, Feb 2008, South AfricaGoogle Scholar
  5. 5.
    Sonhammer, E.L., Eddy, S.R., Durbin, R.: Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28, 405–420 (1997)CrossRefGoogle Scholar
  6. 6.
    Levitt, M.: Accurate modelling of protein conformation by automatic segment matching. J. Mol. Biol. 226, 507–533 (1992)CrossRefGoogle Scholar
  7. 7.
    Sali, A., Blundell, T.L.: Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993)CrossRefGoogle Scholar
  8. 8.
    Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983)CrossRefGoogle Scholar
  9. 9.
    Baker, D., Sali, A.: Protein structure prediction and structural genomics. Science 294, 93–96 (2001)CrossRefGoogle Scholar
  10. 10.
    Thornton, J.M., Todd, A.E., Milburn, D., Borkakoti, N., Orengo, C.A.: From structure to function: approaches and limitations. Nat Struct. Biol. Suppl. 991–994 (2000)Google Scholar
  11. 11.
    Marbotti, A., Facchiano, A.M.: Homology modeling studies on human galactose-l-phosphate uridylytransferase and on its galactosemia-related mutant Q188R provide an explanation of molecular effects of the mutation on homo- and heterodimers. J. Med. Chem. 48, 773–779 (2005)CrossRefGoogle Scholar
  12. 12.
    Walters, W.P., Stahl, M.T., Murcko, M.A.: Virtual screening—an overview. Drug Discov. Today. 160–178 (1998)Google Scholar
  13. 13.
    Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R., Ferrin, T.E.: A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161(2), 269–288 (1982)CrossRefGoogle Scholar
  14. 14.
    Goodford, P.J.: A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28(7), 849–857 (1985)CrossRefGoogle Scholar
  15. 15.
    Levitt, D.G., Banaszak, L.J.: POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J. Mol. Graph. 10(4), 229–234 (1992)CrossRefGoogle Scholar
  16. 16.
    Laskowski, R.A.: SURFNET: a program for visualizing molecular surfaces, cavities and intermolecular interactions. J. Mol. Graph. 13(5), 323–330 (1995)CrossRefGoogle Scholar
  17. 17.
    Brady Jr., G.P., Brady Jr., G.P., Stouten, P.F.: Fast prediction and visualization of protein binding pockets with PASS. J. Comput. Aided Mol. Des. 14(4), 383–401 (2000)CrossRefGoogle Scholar
  18. 18.
    Mezei, M.: A new method for mapping macromolecular topography. J. Mol. Graph. Model. 21(5), 463–472 (2003)CrossRefGoogle Scholar
  19. 19.
    Fischer, E.: Einfluss der configuration auf die wirkung derenzyme. Ber. Dt. Chem. Ges. 27, 2985–2993 (1894)CrossRefGoogle Scholar
  20. 20.
    Koshland Jr., D.E.: Correlation of structure and function in enzyme action. Science 142, 1533–1541 (1963)CrossRefGoogle Scholar
  21. 21.
    Meng, X.-Y., Zhang, H.-X., Mezei, M., Cui, M.: Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery (2012)Google Scholar
  22. 22.
    Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J.: Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3(11), 935–949 (2004)CrossRefGoogle Scholar
  23. 23.
    Aqvist, J., Luzhkov, V.B., Brandsdal, B.O.: Ligand binding affinities from MD simulations. Acc. Chem. Res. 35(6), 358–365 (2002)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Krammer, A., Kirchhoff, P.D., Jiang, X., Venkatachalam, C.M., Waldman, M.: LigScore: a novel scoring function for predicting binding affinities, Nov (2004)Google Scholar
  26. 26.
    Darnell, S.J., Page, D., Mitchell, J.C.: An automated decision-tree approach to predicting protein interaction hot spots (2007)Google Scholar
  27. 27.
    Li. X., Zhu, M., Li, X., Wang, H.-O., Wang, S.: Protein–protein binding affinity prediction based on an SVR ensemble. Intelligent ComputingGoogle Scholar
  28. 28.
    Li, H., Leung, K.-S., Wong, M.-H., Ballester, P.J.: The use of random forest to predict binding affinity in docking. Bioinform. Biomed. Eng. Ser, 9044, 238–247 (2015)Google Scholar
  29. 29.
    Spinocerebellar Ataxia 1; SCA1, Online Mendelian Inheritance in Man (OMIM)Google Scholar
  30. 30.
    Spinocerebellar Ataxia 2, SCA2; Online Mendelian Inheritance in Man (OMIM)Google Scholar
  31. 31.
    Spinocerebellar Ataxia, Type 3, SCA3, Machado-Joseph Disease; Online Mendelian Inheritance in Man (OMIM)Google Scholar
  32. 32.
    Spinocerebellar Ataxia 6, SCA6; Online Mendelian Inheritance in Man (OMIM)Google Scholar
  33. 33.
    Spinocerebellar Ataxia 7, SCA7; Online Mendelian Inheritance in Man (OMIM)Google Scholar
  34. 34.
    Spinocerebellar Ataxia 8, SCA8; Online Mendelian Inheritance in Man (OMIM)Google Scholar
  35. 35.
    Subramony, S.H., Ashizawa, T.: Spinocerebellar Ataxia Type 1, July 3 (2014)Google Scholar
  36. 36.
    Pulst, S.M.: Spinocerebellar Ataxia Type 2, November 12 (2015)Google Scholar
  37. 37.
    Paulson, H.: Spinocerebellar Ataxia type 3, Sept. 24 (2015)Google Scholar
  38. 38.
    Gomez, C.M.: Spinocerebellar Ataxia type 6, July 18 (2013)Google Scholar
  39. 39.
    Garden, G.: Spinocerebellar Ataxia type 7, December 20 (2012)Google Scholar
  40. 40.
    Ayhan, F., Ikeda, Y. et al.: Spinocerebellar Ataxia type 8, April 3 (2014)Google Scholar
  41. 41.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)CrossRefGoogle Scholar
  42. 42.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402 (1997)CrossRefGoogle Scholar
  43. 43.
    Barton, G.J.: Computer speed and sequence comparison. Science 257, 1609–1610 (1992)CrossRefGoogle Scholar
  44. 44.
    Higgins, D.G., Sharp, P.M.: CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73, 237–244 (1988)CrossRefGoogle Scholar
  45. 45.
    Edgar, R.C.: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004)CrossRefGoogle Scholar
  46. 46.
    Notredame, C., Higgins, D., Heringa, J.: T-Coffee: a novel method for multiple sequence alignments. J. Mol. Biol. 302, 205–217 (2000)CrossRefGoogle Scholar
  47. 47.
    Böhm, H.-J.: The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure, 15 Dec (1993)Google Scholar
  48. 48.
    Gohlke, H., Hendlich, M., Klebe, G.: Predicting binding modes, binding affinities and ‘hot spots’ for protein-ligand complexes using a knowledge-based scoring function, pp. 115–144, vol. 20, Dec (2000)Google Scholar
  49. 49.
    Huang, S.-Y., Zou, X.: An iterative knowledge-based scoring function to predict protein–ligand interactions: II. Validation of the scoring function (2006)Google Scholar
  50. 50.
    Plewczynski, D., Łażniewski, M., Grotthuss, M.V., Rychlewski, L., Ginalski, K. VoteDock: Consensus docking method for prediction of protei–ligand interactions. Sept (2010)Google Scholar
  51. 51.
    Tanchuk, V.Y., Tanin, V.O., Vovk, A.I., Poda, G.: A new, improved hybrid scoring function for molecular docking and scoring based on autodock and autodock vina. Chem. Biol. Drug Des. Dec (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Computer Science (PG)PSGR Krishnammal College for WomenCoimbatoreIndia

Personalised recommendations