Automated System for Detection of White Blood Cells in Human Blood Sample

  • Siddhartha BanerjeeEmail author
  • Bibek Ranjan Ghosh
  • Surajit Giri
  • Dipayan Ghosh
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 77)


Determination of the WBC count of the body necessitates the detection of white blood cells (leukocytes). During an annual physical checkup, generally doctors prescribe for a complete blood count report. WBC count is required to determine the existence of disease for symptom like body aches, chills, fever, headaches, and many more. The existence of autoimmune diseases, immune deficiencies, blood disorders, and hidden infections within human body can also be alerted by the report of WBC count. The usefulness of chemotherapy or radiation treatment, especially for cancer patients, is also monitored by this report. This paper introduces an automated system to detect the white blood cell from the microscopic image of human blood sample using several image processing techniques.


WBC RBC Thresholding Region labeling Erosion Dilation 


  1. 1.
    Mohamed, M., Far, B., Guaily, A.: An efficient technique for white blood cells nuclei automatic segmentation. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 220–225 (2012)Google Scholar
  2. 2.
    Kaur, R., Kaur, H.: Comparative analysis of white blood cell by different segmentation methods using knowledge based learning. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 3(9), 11720–11728 (2014)Google Scholar
  3. 3.
    Marzuki, N.I.C., Mahmood, N.H.H., Razak, M.A.A.: Segmentation of white blood cell nucleus using active contour. J. Teknologi 74(6), 115–118 (2015)Google Scholar
  4. 4.
    Bhamare, M.G., Patil, D.S.: Automatic blood cell analysis by using digital image processing: a preliminary study. Int. J. Eng. Res. Technol. 2(9), 3137–3141 (2013)Google Scholar
  5. 5.
    Pavithra, S., Bagyamani, J.: White blood cell analysis using watershed and circular hough transform technique. Int. J. Comput. Intell. Inform. 5(2), 114–123 (2015)Google Scholar
  6. 6.
    Prabakaran, M.K., Khan, F.I., Abrar, N.M., Abbas, F.M., Khrshid, S.S.: A smart sensing and quantification of platelets, red blood cells (RBC), white blood cells (WBC) and classification of WBC’s using microscopic blood image. Int. J. Appl. Med. Sci. Res. 1(1), 1–9 (2015)Google Scholar
  7. 7.
    Ravikumar, S., Shanmugam, A.: WBC image segmentation and classification using RVM. Appl. Math. Sci. 8(45), 2227–2237 (2014)Google Scholar
  8. 8.
    Othman, M.Z., Ali, A.B.: Segmentation and feature extraction of lymphocyte WBC using microscopic images. Int. J. Eng. Res. Technol. 3(12), 696–701 (2014)Google Scholar
  9. 9.
    Shivhare, S., Shrivastava, R.: Automatic bone marrow white blood cell classification using morphological granulometric feature of nucleus. Int. J. Sci. Technol. Res. 1(4), 125–131 (2012)Google Scholar
  10. 10.
    Chanda, B., Majumder, D.D.: Digital Image Processing and Analysis. Prentice Hall, India (2009)Google Scholar
  11. 11.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, India (2009)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Siddhartha Banerjee
    • 1
    Email author
  • Bibek Ranjan Ghosh
    • 1
  • Surajit Giri
    • 1
  • Dipayan Ghosh
    • 1
  1. 1.Department of Computer ScienceRamakrishna Mission Residential College (Autonomous)KolkataIndia

Personalised recommendations