Advertisement

Etiopathology of Atopic Dermatitis: Immunological Aspects of Dendritic Cells (DCs) and Innate Lymphoid Cells (ILCs)

  • Saeko Nakajima
  • Tetsuya Honda
  • Kenji KabashimaEmail author
Chapter

Abstract

Dendritic cells (DCs) form a heterogeneous group of antigen-presenting cells that play different roles in skin immunology. Recent studies have revealed the existence of distinct DC populations in the skin, highlighting the complexity of the cutaneous DC network in the steady state and inflammatory conditions.

Recently, another new skin immune cell subset, innate lymphoid cells (ILCs), which are part of a heterogeneous family of innate immune cells, has emerged as an important contributor to inflammatory skin diseases, such as atopic dermatitis (AD) and psoriasis.

In this review, we will summarize the current understanding of the functions of cutaneous DCs and ILCs in the pathogenesis of AD and will discuss the potential implications of their functions in AD.

Keywords

Langerhans cells (LCs) Dendritic cells (DCs) Type 2 innate lymphoid cells (ILC2s) 

Notes

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology and the Ministry of Health, Labor, and Welfare of Japan.

References

  1. 1.
    Kaplan DH, Igyarto BZ, Gaspari AA. Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol. 2012;12(2):114–24. doi: 10.1038/nri3150.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9(10):679–91. doi: 10.1038/nri2622.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Otsuka A, Kabashima K. Mast cells and basophils in cutaneous immune responses. Allergy. 2015;70(2):131–40. doi: 10.1111/all.12526.CrossRefPubMedGoogle Scholar
  4. 4.
    Brunner PM, Silverberg JI, Guttman-Yassky E, Paller AS, Kabashima K, Amagai M, et al. Increasing comorbidities suggest that atopic dermatitis is a systemic disorder. J Invest Dermatol. 2016. doi: 10.1016/j.jid.2016.08.022.
  5. 5.
    Dainichi T, Hanakawa S, Kabashima K. Classification of inflammatory skin diseases: a proposal based on the disorders of the three-layered defense systems, barrier, innate immunity and acquired immunity. J Dermatol Sci. 2014;76(2):81–9. doi: 10.1016/j.jdermsci.2014.08.010.CrossRefPubMedGoogle Scholar
  6. 6.
    Egawa G, Kabashima K. Multifactorial skin barrier deficiency and atopic dermatitis: essential topics to prevent the atopic march. J Allergy Clin Immunol. 2016;138(2):350–8.e1. doi: 10.1016/j.jaci.2016.06.002.CrossRefPubMedGoogle Scholar
  7. 7.
    Kabashima K. New concept of the pathogenesis of atopic dermatitis: interplay among the barrier, allergy, and pruritus as a trinity. J Dermatol Sci. 2013;70(1):3–11. doi: 10.1016/j.jdermsci.2013.02.001.CrossRefPubMedGoogle Scholar
  8. 8.
    Moniaga CS, Kabashima K. Filaggrin in atopic dermatitis: flaky tail mice as a novel model for developing drug targets in atopic dermatitis. Inflamm Allergy Drug Targets. 2011;10(6):477–85.CrossRefPubMedGoogle Scholar
  9. 9.
    Saeki H, Nakahara T, Tanaka A, Kabashima K, Sugaya M, Murota H, et al. Clinical practice guidelines for the management of atopic dermatitis 2016. J Dermatol. 2016;43(10):1117–45. doi: 10.1111/1346-8138.13392.CrossRefPubMedGoogle Scholar
  10. 10.
    Werfel T. The role of leukocytes, keratinocytes, and allergen-specific IgE in the development of atopic dermatitis. J Invest Dermatol. 2009;129(8):1878–91. doi: 10.1038/jid.2009.71.CrossRefPubMedGoogle Scholar
  11. 11.
    Amano W, Nakajima S, Kunugi H, Numata Y, Kitoh A, Egawa G, et al. The Janus kinase inhibitor JTE-052 improves skin barrier function through suppressing signal transducer and activator of transcription 3 signaling. J Allergy Clin Immunol. 2015;136(3):667–677. e7. doi: 10.1016/j.jaci.2015.03.051.CrossRefPubMedGoogle Scholar
  12. 12.
    Ewald DA, Noda S, Oliva M, Litman T, Nakajima S, Li X et al. Major differences between human atopic dermatitis and murine models, as determined by using global transcriptomic profiling. J Allergy Clin Immunol. 2016. doi: 10.1016/j.jaci.2016.08.029.
  13. 13.
    Nemoto O, Furue M, Nakagawa H, Shiramoto M, Hanada R, Matsuki S, et al. The first trial of CIM331, a humanized antihuman interleukin-31 receptor A antibody, in healthy volunteers and patients with atopic dermatitis to evaluate safety, tolerability and pharmacokinetics of a single dose in a randomized, double-blind, placebo-controlled study. Br J Dermatol. 2016;174(2):296–304. doi: 10.1111/bjd.14207.CrossRefPubMedGoogle Scholar
  14. 14.
    Noda S, Suarez-Farinas M, Ungar B, Kim SJ, de Guzman SC, Xu H, et al. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J Allergy Clin Immunol. 2015;136(5):1254–64. doi: 10.1016/j.jaci.2015.08.015.CrossRefPubMedGoogle Scholar
  15. 15.
    Nomura T, Kabashima K, Miyachi Y. The panoply of alphabetaT cells in the skin. J Dermatol Sci. 2014;76(1):3–9. doi: 10.1016/j.jdermsci.2014.07.010.CrossRefPubMedGoogle Scholar
  16. 16.
    Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811. doi: 10.1146/annurev.immunol.18.1.767.CrossRefPubMedGoogle Scholar
  17. 17.
    Kim BS, Wojno ED, Artis D. Innate lymphoid cells and allergic inflammation. Curr Opin Immunol. 2013;25(6):738–44. doi: 10.1016/j.coi.2013.07.013.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kim BS, Wang K, Siracusa MC, Saenz SA, Brestoff JR, Monticelli LA, et al. Basophils promote innate lymphoid cell responses in inflamed skin. J Immunol. 2014;193(7):3717–25. doi: 10.4049/jimmunol.1401307.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Leon B, Ardavin C. Monocyte-derived dendritic cells in innate and adaptive immunity. Immunol Cell Biol. 2008;86(4):320–4. doi: 10.1038/icb.2008.14.CrossRefPubMedGoogle Scholar
  20. 20.
    Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 2013;210(13):2939–50. doi: 10.1084/jem.20130351.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Valladeau J, Saeland S. Cutaneous dendritic cells. Semin Immunol. 2005;17(4):273–83. doi: 10.1016/j.smim.2005.05.009.CrossRefPubMedGoogle Scholar
  22. 22.
    Borkowski TA, Letterio JJ, Farr AG, Udey MC. A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells. J Exp Med. 1996;184(6):2417–22.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tang A, Amagai M, Granger LG, Stanley JR, Udey MC. Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature. 1993;361(6407):82–5. doi: 10.1038/361082a0.CrossRefPubMedGoogle Scholar
  24. 24.
    Inaba K, Swiggard WJ, Inaba M, Meltzer J, Mirza A, Sasagawa T, et al. Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145. I. Expression on dendritic cells and other subsets of mouse leukocytes. Cell Immunol. 1995;163(1):148–56.CrossRefPubMedGoogle Scholar
  25. 25.
    Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature. 1995;375(6527):151–5. doi: 10.1038/375151a0.CrossRefPubMedGoogle Scholar
  26. 26.
    Hunger RE, Sieling PA, Ochoa MT, Sugaya M, Burdick AE, Rea TH, et al. Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J Clin Invest. 2004;113(5):701–8. doi: 10.1172/JCI19655.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol. 2008;8(12):935–47. doi: 10.1038/nri2455.CrossRefPubMedGoogle Scholar
  28. 28.
    Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan DH, et al. Identification of a novel population of Langerin+ dendritic cells. J Exp Med. 2007;204(13):3147–56. doi: 10.1084/jem.20071966.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ginhoux F, Collin MP, Bogunovic M, Abel M, Leboeuf M, Helft J, et al. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J Exp Med. 2007;204(13):3133–46. doi: 10.1084/jem.20071733.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Poulin LF, Henri S, de Bovis B, Devilard E, Kissenpfennig A, Malissen B. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J Exp Med. 2007;204(13):3119–31. doi: 10.1084/jem.20071724.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cepek KL, Shaw SK, Parker CM, Russell GJ, Morrow JS, Rimm DL, et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature. 1994;372(6502):190–3. doi: 10.1038/372190a0.CrossRefPubMedGoogle Scholar
  32. 32.
    Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M, Hashimoto D, et al. The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med. 2009;206(13):3115–30. doi: 10.1084/jem.20091756.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Patel VI, Metcalf JP. Identification and characterization of human dendritic cell subsets in the steady state: a review of our current knowledge. J Invest Med. 2016;64(4):833–47. doi: 10.1136/jim-2016-000072.CrossRefGoogle Scholar
  34. 34.
    Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol. 2005;23:275–306. doi: 10.1146/annurev.immunol.23.021704.115633.CrossRefPubMedGoogle Scholar
  35. 35.
    Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 2003;19(1):59–70.CrossRefPubMedGoogle Scholar
  36. 36.
    Novak N, Peng W, Yu C. Network of myeloid and plasmacytoid dendritic cells in atopic dermatitis. Adv Exp Med Biol. 2007;601:97–104.CrossRefPubMedGoogle Scholar
  37. 37.
    Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med. 2009;206(13):2937–46. doi: 10.1084/jem.20091527.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nakajima S, Igyarto BZ, Honda T, Egawa G, Otsuka A, Hara-Chikuma M, et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol. 2012;129(4):1048–55.e6. doi: 10.1016/j.jaci.2012.01.063.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ouchi T, Kubo A, Yokouchi M, Adachi T, Kobayashi T, Kitashima DY, et al. Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. J Exp Med. 2011;208(13):2607–13. doi: 10.1084/jem.20111718.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005;202(9):1213–23. doi: 10.1084/jem.20051135.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Oyoshi MK, Larson RP, Ziegler SF, Geha RS. Mechanical injury polarizes skin dendritic cells to elicit a T(H)2 response by inducing cutaneous thymic stromal lymphopoietin expression. J Allergy Clin Immunol. 2010;126(5):976–84, 84.e1–5. doi: 10.1016/j.jaci.2010.08.041.
  42. 42.
    Ebner S, Nguyen VA, Forstner M, Wang YH, Wolfram D, Liu YJ, et al. Thymic stromal lymphopoietin converts human epidermal Langerhans cells into antigen-presenting cells that induce proallergic T cells. J Allergy Clin Immunol. 2007;119(4):982–90. doi: 10.1016/j.jaci.2007.01.003.CrossRefPubMedGoogle Scholar
  43. 43.
    Liu YJ. Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med. 2006;203(2):269–73. doi: 10.1084/jem.20051745.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3(7):673–80. doi: 10.1038/ni805.CrossRefPubMedGoogle Scholar
  45. 45.
    Bieber T. Atopic dermatitis. N Engl J Med. 2008;358(14):1483–94. doi: 10.1056/NEJMra074081.CrossRefPubMedGoogle Scholar
  46. 46.
    Wollenberg A, Rawer HC, Schauber J. Innate immunity in atopic dermatitis. Clin Rev Allergy Immunol. 2011;41(3):272–81. doi: 10.1007/s12016-010-8227-x.CrossRefPubMedGoogle Scholar
  47. 47.
    Yoshida K, Kubo A, Fujita H, Yokouchi M, Ishii K, Kawasaki H, et al. Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis. J Allergy Clin Immunol. 2014;134(4):856–64. doi: 10.1016/j.jaci.2014.08.001.CrossRefPubMedGoogle Scholar
  48. 48.
    Mjosberg J, Eidsmo L. Update on innate lymphoid cells in atopic and non-atopic inflammation in the airways and skin. Clin Exp Allergy. 2014;44(8):1033–43. doi: 10.1111/cea.12353.CrossRefPubMedGoogle Scholar
  49. 49.
    Fan X, Rudensky AY. Hallmarks of tissue-resident lymphocytes. Cell. 2016;164(6):1198–211. doi: 10.1016/j.cell.2016.02.048.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sonnenberg GF, Mjosberg J, Spits H, Artis D. SnapShot: innate lymphoid cells. Immunity. 2013;39(3):622-e1. doi: 10.1016/j.immuni.2013.08.021.CrossRefGoogle Scholar
  51. 51.
    Dyring-Andersen B, Geisler C, Agerbeck C, Lauritsen JP, Gudjonsdottir SD, Skov L, et al. Increased number and frequency of group 3 innate lymphoid cells in nonlesional psoriatic skin. Br J Dermatol. 2014;170(3):609–16. doi: 10.1111/bjd.12658.CrossRefPubMedGoogle Scholar
  52. 52.
    Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA, Sonnenberg GF, et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med. 2013;5(170):170ra16. doi: 10.1126/scitranslmed.3005374.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Teunissen MB, Munneke JM, Bernink JH, Spuls PI, Res PC, Te Velde A, et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol. 2014;134(9):2351–60. doi: 10.1038/jid.2014.146.CrossRefPubMedGoogle Scholar
  54. 54.
    Villanova F, Flutter B, Tosi I, Grys K, Sreeneebus H, Perera GK, et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol. 2014;134(4):984–91. doi: 10.1038/jid.2013.477.CrossRefPubMedGoogle Scholar
  55. 55.
    Roediger B, Kyle R, Yip KH, Sumaria N, Guy TV, Kim BS, et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat Immunol. 2013;14(6):564–73. doi: 10.1038/ni.2584.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR, et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med. 2006;203(4):1105–16. doi: 10.1084/jem.20051615.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 2010;463(7280):540–4. doi: 10.1038/nature08636.CrossRefPubMedGoogle Scholar
  58. 58.
    Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464(7293):1367–70. doi: 10.1038/nature08900.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ, et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci U S A. 2010;107(25):11489–94. doi: 10.1073/pnas.1003988107.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chang YJ, Kim HY, Albacker LA, Baumgarth N, McKenzie AN, Smith DE, et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol. 2011;12(7):631–8. doi: 10.1038/ni.2045.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 2011;12(11):1045–54. doi: 10.1031/ni.2131.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Monticelli LA, Sonnenberg GF, Artis D. Innate lymphoid cells: critical regulators of allergic inflammation and tissue repair in the lung. Curr Opin Immunol. 2012;24(3):284–9. doi: 10.1016/j.coi.2012.03.012.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Akdis M, Akdis CA, Weigl L, Disch R, Blaser K. Skin-homing, CLA+ memory T cells are activated in atopic dermatitis and regulate IgE by an IL-13-dominated cytokine pattern: IgG4 counter-regulation by CLA- memory T cells. J Immunol. 1997;159(9):4611–9.PubMedGoogle Scholar
  64. 64.
    Bos JD, Wierenga EA, Sillevis Smitt JH, van der Heijden FL, Kapsenberg ML. Immune dysregulation in atopic eczema. Arch Dermatol. 1992;128(11):1509–12.CrossRefPubMedGoogle Scholar
  65. 65.
    Plaut M. Antigen-specific lymphokine secretory patterns in atopic disease. J Immunol. 1990;144(12):4497–500.PubMedGoogle Scholar
  66. 66.
    Liu FT, Goodarzi H, Chen HY. IgE, mast cells, and eosinophils in atopic dermatitis. Clin Rev Allergy Immunol. 2011;41(3):298–310. doi: 10.1007/s12016-011-8252-4.CrossRefPubMedGoogle Scholar
  67. 67.
    Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–9. doi: 10.1101/gr.131029.111.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Munoz-Planillo R, Hasegawa M, et al. Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397–401. doi: 10.1038/nature12655.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Lantz CS, Boesiger J, Song CH, Mach N, Kobayashi T, Mulligan RC, et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature. 1998;392(6671):90–3. doi: 10.1038/32190.CrossRefPubMedGoogle Scholar
  70. 70.
    Townsend JM, Fallon GP, Matthews JD, Smith P, Jolin EH, McKenzie NA. IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity. 2000;13(4):573–83.CrossRefPubMedGoogle Scholar
  71. 71.
    Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M, Lahl K, et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol. 2011;12(11):1071–7. doi: 10.1038/ni.2133.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Xue L, Salimi M, Panse I, Mjosberg JM, McKenzie AN, Spits H, et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol. 2014;133(4):1184–94. doi: 10.1016/j.jaci.2013.10.056.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Mjosberg J, Bernink J, Golebski K, Karrich JJ, Peters CP, Blom B, et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity. 2012;37(4):649–59. doi: 10.1016/j.immuni.2012.08.015.CrossRefPubMedGoogle Scholar
  74. 74.
    Imai Y, Yasuda K, Sakaguchi Y, Haneda T, Mizutani H, Yoshimoto T, et al. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci U S A. 2013;110(34):13921–6. doi: 10.1073/pnas.1307321110.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Saeko Nakajima
    • 1
  • Tetsuya Honda
    • 1
  • Kenji Kabashima
    • 1
    Email author
  1. 1.Department of DermatologyKyoto University Graduate School of MedicineKyotoJapan

Personalised recommendations