Advertisement

Genome-Wide Association Study for Atopic Dermatitis in the Japanese Population

  • Mayumi TamariEmail author
  • Tomomitsu Hirota
Chapter

Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disease in which there are considerable genetic contributions. Genome-wide association studies (GWASs) provide an unbiased method to identify the genetic factors of human diseases and phenotypes comprehensively. Although it is well known that loss-of-function mutations in FLG are the most significant genetic risk factor for AD, recent GWASs, immunochip analyses, and meta-analyses of GWASs have identified a number of loci associated with AD. Candidate genes identified by GWASs of AD are involved in skin barrier functions and innate and adaptive immune responses. Those findings imply a substantial overlap of genetic components with other autoimmune and inflammatory diseases. Genetic variants may influence molecular phenotypes, including RNA expression and stability, transcription factor binding, DNA methylation, histone modifications, and protein levels. Understanding the functional links between susceptibility variants and phenotypic traits is crucial to improve our knowledge of AD. Further interdisciplinary research is necessary for translation of the genetics of AD into clinical practice.

Keywords

Atopic dermatitis Genome-wide association study Immunochip analysis Meta-analysis Genetic variants 

References

  1. 1.
    Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387:1109–22. doi: 10.1016/S0140-6736(15)00149-X.CrossRefPubMedGoogle Scholar
  2. 2.
    Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–76. doi: 10.1056/NEJMra0905980.CrossRefPubMedGoogle Scholar
  3. 3.
    Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11:499–511. doi: 10.1038/nrg2796.CrossRefPubMedGoogle Scholar
  4. 4.
    Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365:1315–27. doi: 10.1056/NEJMra1011040.CrossRefPubMedGoogle Scholar
  5. 5.
    Esparza-Gordillo J, Weidinger S, Fölster-Holst R, Bauerfeind A, Ruschendorf F, Patone G, et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet. 2009;41:596–601. doi: 10.1038/ng.347.CrossRefPubMedGoogle Scholar
  6. 6.
    Sun LD, Xiao FL, Li Y, Zhou WM, Tang HY, Tang XF, et al. Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat Genet. 2011;43:690–4. doi: 10.1038/ng.851.CrossRefPubMedGoogle Scholar
  7. 7.
    Paternoster L, Standl M, Chen CM, Ramasamy A, Bønnelykke K, Duijts L, et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet. 2011;44:187–92. doi: 10.1038/ng.1017.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hirota T, Takahashi A, Kubo M, Tsunoda T, Tomita K, Sakashita M, et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat Genet. 2012;44:1222–6. doi: 10.1038/ng.2438.CrossRefPubMedGoogle Scholar
  9. 9.
    Ellinghaus D, Baurecht H, Esparza-Gordillo J, Rodríguez E, Matanovic A, Marenholz I, et al. High-density genotyping study identifies four new susceptibility loci for atopic dermatitis. Nat Genet. 2013;45:808–12. doi: 10.1038/ng.2642.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Esparza-Gordillo J, Schaarschmidt H, Liang L, Cookson W, Bauerfeind A, Lee-Kirsch MA, et al. A functional IL-6 receptor (IL6R) variant is a risk factor for persistent atopic dermatitis. J Allergy Clin Immunol. 2013;132:371–7. doi: 10.1016/j.jaci.2013.01.057.CrossRefPubMedGoogle Scholar
  11. 11.
    Kim KW, Myers RA, Lee JH, Igartua C, Lee KE, Kim YH, et al. Genome-wide association study of recalcitrant atopic dermatitis in Korean children. J Allergy Clin Immunol. 2015;136:678–684.e4. doi: 10.1016/j.jaci.2015.03.030.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schaarschmidt H, Ellinghaus D, Rodríguez E, Kretschmer A, Baurecht H, Lipinski S, et al. A genome-wide association study reveals 2 new susceptibility loci for atopic dermatitis. J Allergy Clin Immunol. 2015;136:802–6. doi: 10.1016/j.jaci.2015.01.047.CrossRefPubMedGoogle Scholar
  13. 13.
    Paternoster L, Standl M, Waage J, Baurecht H, Hotze M, Strachan DP, et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat Genet. 2015;47:1449–56. doi: 10.1038/ng.3424.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Doherty TA, Soroosh P, Khorram N, Fukuyama S, Rosenthal P, Cho JY, et al. The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling. Nat Med. 2011;17:596–603. doi: 10.1038/nm.2356.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Montgomery RI, Warner MS, Lum BJ, Spear PG. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell. 1996;87:427–36.CrossRefPubMedGoogle Scholar
  16. 16.
    Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol. 2010;10:103–10. doi: 10.1038/nri2692.CrossRefPubMedGoogle Scholar
  17. 17.
    Parkes M, Cortes A, van Heel DA, Brown MA. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat Rev Genet. 2013;14:661–73. doi: 10.1038/nrg3502.CrossRefPubMedGoogle Scholar
  18. 18.
    Hirota T, Takahashi A, Kubo M, Tsunoda T, Tomita K, Doi S, et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat Genet. 2011;43:893–6. doi: 10.1038/ng.887.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hong X, Hao K, Ladd-Acosta C, Hansen KD, Tsai HJ, Liu X, et al. Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun. 2015;6:6304. doi: 10.1038/ncomms7304.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Damm A, Giebeler N, Zamek J, Zigrino P, Kufer TA. Epidermal NLRP10 contributes to contact hypersensitivity responses in mice. Eur J Immunol. 2016;46:1959–69. doi: 10.1002/eji.201646401.CrossRefPubMedGoogle Scholar
  21. 21.
    Saeki H, Tamaki K. Thymus and activation regulated chemokine (TARC)/CCL17 and skin diseases. J Dermatol Sci. 2006;43:75–84.CrossRefPubMedGoogle Scholar
  22. 22.
    Jung K, Tanaka A, Fujita H, Matsuda A, Oida K, Karasawa K, et al. Peroxisome proliferator-activated receptor γ-mediated suppression of dendritic cell function prevents the onset of atopic dermatitis in NC/Tnd mice. J Allergy Clin Immunol. 2011;127:420–429.e1–6. doi: 10.1016/j.jaci.2010.10.043.CrossRefPubMedGoogle Scholar
  23. 23.
    Lopez RG, Garcia-Silva S, Moore SJ, Bereshchenko O, Martinez-Cruz AB, Ermakova O, et al. C/EBPalpha and beta couple interfollicular keratinocyte proliferation arrest to commitment and terminal differentiation. Nat Cell Biol. 2009;11:1181–90. doi: 10.1038/ncb1960.CrossRefPubMedGoogle Scholar
  24. 24.
    Molinero LL, Cubre A, Mora-Solano C, Wang Y, Alegre ML. T cell receptor/CARMA1/NF-κB signaling controls T-helper (Th) 17 differentiation. Proc Natl Acad Sci U S A. 2012;109:18529–34. doi: 10.1073/pnas.1204557109.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang L, Ni X, Covington KR, Yang BY, Shiu J, Zhang X, et al. Genomic profiling of Sézary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet. 2015;47:1426–34. doi: 10.1038/ng.3444.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hou S, Du L, Lei B, Pang CP, Zhang M, Zhuang W, et al. Genome-wide association analysis of Vogt-Koyanagi-Harada syndrome identifies two new susceptibility loci at 1p31.2 and 10q21.3. Nat Genet. 2014;46:1007–11. doi: 10.1038/ng.3061.CrossRefPubMedGoogle Scholar
  27. 27.
    Okamura T, Fujio K, Sumitomo S, Yamamoto K. Roles of LAG3 and EGR2 in regulatory T cells. Ann Rheum Dis. 2012;71:i96–100. doi: 10.1136/annrheumdis-2011-200588.CrossRefPubMedGoogle Scholar
  28. 28.
    Safford M, Collins S, Lutz MA, Allen A, Huang CT, Kowalski J, et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat Immunol. 2005;6:472–80.CrossRefPubMedGoogle Scholar
  29. 29.
    Hart PH, Gorman S, Finlay-Jones JJ. Modulation of the immune system by UV radiation: more than just the effects of vitamin D? Nat Rev Immunol. 2011;11:584–96. doi: 10.1038/nri3045.CrossRefPubMedGoogle Scholar
  30. 30.
    Peroni DG, Piacentini GL, Cametti E, Chinellato I, Boner AL. Correlation between serum 25-hydroxyvitamin D levels and severity of atopic dermatitis in children. Br J Dermatol. 2011;164:1078–82. doi: 10.1111/j.1365-2133.2010.10147.x.CrossRefPubMedGoogle Scholar
  31. 31.
    Haeck IM, Knol MJ, Ten Berge O, van Velsen SG, de Bruin-Weller MS, Bruijnzeel-Koomen CA. Enteric-coated mycophenolate sodium versus cyclosporin A as long-term treatment in adult patients with severe atopic dermatitis: a randomized controlled trial. J Am Acad Dermatol. 2011;64:1074–84. doi: 10.1016/j.jaad.2010.04.027.CrossRefPubMedGoogle Scholar
  32. 32.
    Schuster C, Gerold KD, Schober K, Probst L, Boerner K, Kim MJ, et al. The autoimmunity-associated gene CLEC16A modulates thymic epithelial cell autophagy and alters T cell selection. Immunity. 2015;42:942–52. doi: 10.1016/j.immuni.2015.04.011.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hinds DA, McMahon G, Kiefer AK, Do CB, Eriksson N, Evans DM, et al. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat Genet. 2013;45:907–11. doi: 10.1038/ng.2686.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. doi: 10.1038/nature11247.CrossRefGoogle Scholar
  35. 35.
    Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 2010;28:1045–8. doi: 10.1038/nbt1010-1045.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Grundberg E, Small KS, Hedman ÅK, Nica AC, Buil A, Keildson S, et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat Genet. 2012;44:1084–9. doi: 10.1038/ng.2394.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    de Jong MA, Geijtenbeek TB. Langerhans cells in innate defense against pathogens. Trends Immunol. 2010;31:452–9. doi: 10.1016/j.it.2010.08.002.CrossRefPubMedGoogle Scholar
  38. 38.
    Lundström W, Highfill S, Walsh ST, Beq S, Morse E, Kockum I, et al. Soluble IL7Rα potentiates IL-7 bioactivity and promotes autoimmunity. Proc Natl Acad Sci U S A. 2013;110:E1761–70. doi: 10.1073/pnas.1222303110.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Uehira M, Matsuda H, Nakamura A, Nishimoto H. Immunologic abnormalities exhibited in IL-7 transgenic mice with dermatitis. J Invest Dermatol. 1998;110:740–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1058–62.CrossRefPubMedGoogle Scholar
  41. 41.
    Stritesky GL, Jameson SC, Hogquist KA. Selection of self-reactive T cells in the thymus. Annu Rev Immunol. 2012;30:95–114. doi: 10.1146/annurev-immunol-020711-075035.CrossRefPubMedGoogle Scholar
  42. 42.
    Zook EC, Ramirez K, Guo X, van der Voort G, Sigvardsson M, Svensson EC, et al. The ETS1 transcription factor is required for the development and cytokine-induced expansion of ILC2. J Exp Med. 2016;213:687–96. doi: 10.1084/jem.20150851.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Baurecht H, Hotze M, Brand S, Büning C, Cormican P, Corvin A, et al. Genome-wide comparative analysis of atopic dermatitis and psoriasis gives insight into opposing genetic mechanisms. Am J Hum Genet. 2015;96:104–20. doi: 10.1016/j.ajhg.2014.12.004.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Marenholz I, Esparza-Gordillo J, Rüschendorf F, Bauerfeind A, Strachan DP, Spycher BD, et al. Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nat Commun. 2015;6:8804. doi: 10.1038/ncomms9804.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Schübeler D. Function and information content of DNA methylation. Nature. 2015;517:321–6. doi: 10.1038/nature14192.CrossRefPubMedGoogle Scholar
  46. 46.
    Liang L, Willis-Owen SA, Laprise C, Wong KC, Davies GA, Hudson TJ, et al. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature. 2015;520:670–4. doi: 10.1038/nature14125.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Auer PL, Lettre G. Rare variant association studies: considerations, challenges and opportunities. Genome Med. 2015;7:16. doi: 10.1186/s13073-015-0138-2.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346:954–9. doi: 10.1126/science.1260144.CrossRefPubMedGoogle Scholar
  49. 49.
    GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5. doi: 10.1038/ng.2653.CrossRefGoogle Scholar
  50. 50.
    Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30. doi: 10.1038/nature14248.CrossRefPubMedCentralGoogle Scholar
  51. 51.
    Netea MG, Joosten LA, Li Y, Kumar V, Oosting M, Smeekens S, et al. Understanding human immune function using the resources from the Human Functional Genomics Project. Nat Med. 2016;22:831–3. doi: 10.1038/nm.4140.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.ProfessorThe Jikei University School of Medicine, Research Center for Medical Science, Core Research Facilities for Basic Science (Molecular Genetics)TokyoJapan
  2. 2.Laboratory for Respiratory and Allergic Diseases, Center for Integrative Medical SciencesInstitute of Physical and Chemical Research (RIKEN)YokohamaJapan

Personalised recommendations