Advertisement

Allergic Rhinitis and Pollinosis

  • Takahiro Tokunaga
  • Shigeharu FujiedaEmail author
Chapter

Abstract

Atopic dermatitis (AD) is the first symptom in the allergic march in children. Thereafter, in some patients, the condition progresses to bronchial asthma and allergic rhinitis (AR) in adolescence and adult life. The percentage of patients with both AD and AR has been found to be 6–9% of children and adolescents in the entire population. Severe early-onset AD is associated with the development of AR, and, similarly, early-onset AR is associated with the development of AD. These facts suggest that the impairment of epithelial barrier function by AD in infants causes subsequent AR. Genome-wide association studies have shown several genes to be associated with both AD and AR. These genes hold the key to elucidating the mechanism of the development of allergic diseases. Furthermore, risk factors and protective factors for atopic diseases have been identified. Among these factors, probiotics might have potential in the remission of AD and AR. Specific immunotherapy is also a promising treatment, and it is expected to provide an option for interventions to prevent the allergic march.

Keywords

Allergic rhinitis Allergic march Genome-wide association study Probiotics Immunotherapy 

References

  1. 1.
    Spergel JM. From atopic dermatitis to asthma: the atopic march. Ann Allergy Asthma Immunol. 2010;105(2):99–106 . quiz 107–9, 117. doi: 10.1016/j.anai.2009.10.002.CrossRefPubMedGoogle Scholar
  2. 2.
    Bantz SK, Zhu Z, Zheng T. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. J Clin Cell Immunol. 2014;5(2):202. doi: 10.4172/2155-9899.1000202.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Tokunaga T, Ninomiya T, Osawa Y, et al. Factors associated with the development and remission of allergic diseases in an epidemiological survey of high school students in Japan. Am J Rhinol Allergy. 2015;29(2):94–9. doi: 10.2500/ajra.2015.29.4135.CrossRefPubMedGoogle Scholar
  4. 4.
    Hong S, Son DK, Lim WR, et al. The prevalence of atopic dermatitis, asthma, and allergic rhinitis and the comorbidity of allergic diseases in children. Environ Health Toxicol. 2012;27:e2012006. doi: 10.5620/eht.2012.27.e2012006.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pols DHJ, Wartna JB, Moed H, van Alphen EI, Bohnen AM, Bindels PJE. Atopic dermatitis, asthma and allergic rhinitis in general practice and the open population: a systematic review. Scand J Prim Health Care. 2016;34(2):143–50. doi: 10.3109/02813432.2016.1160629.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kurukulaaratchy RJ, Zhang H, Patil V, et al. Identifying the heterogeneity of young adult rhinitis through cluster analysis in the Isle of Wight birth cohort. J Allergy Clin Immunol. 2015;135(1):143–50. doi: 10.1016/j.jaci.2014.06.017.CrossRefPubMedGoogle Scholar
  7. 7.
    von Kobyletzki LB, Bornehag C-G, Hasselgren M, Larsson M, Lindström CB, Svensson Å. Eczema in early childhood is strongly associated with the development of asthma and rhinitis in a prospective cohort. BMC Dermatol. 2012;12:11. doi: 10.1186/1471-5945-12-11.CrossRefGoogle Scholar
  8. 8.
    Carlsten C, Dimich-Ward H, Ferguson A, et al. Atopic dermatitis in a high-risk cohort: natural history, associated allergic outcomes, and risk factors. Ann Allergy Asthma Immunol. 2013;110(1):24–8. doi: 10.1016/j.anai.2012.10.005.CrossRefPubMedGoogle Scholar
  9. 9.
    Thomsen SF. Epidemiology and natural history of atopic diseases. Eur Clin Respir J. 2015;2:1–6. doi: 10.3402/ecrj.v2.24642.Google Scholar
  10. 10.
    van der Hulst AE, Klip H, Brand PLP. Risk of developing asthma in young children with atopic eczema: a systematic review. J Allergy Clin Immunol. 2007;120(3):565–9. doi: 10.1016/j.jaci.2007.05.042.CrossRefPubMedGoogle Scholar
  11. 11.
    Akei HS, Brandt EB, Mishra A, et al. Epicutaneous aeroallergen exposure induces systemic TH2 immunity that predisposes to allergic nasal responses. J Allergy Clin Immunol. 2006;118(1):62–9. doi: 10.1016/j.jaci.2006.04.046.CrossRefPubMedGoogle Scholar
  12. 12.
    Spergel JM, Mizoguchi E, Brewer JP, Martin TR, Bhan AK, Geha RS. Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. J Clin Invest. 1998;101(8):1614–22. doi: 10.1172/JCI1647.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Muto T, Fukuoka A, Kabashima K, et al. The role of basophils and proallergic cytokines, TSLP and IL-33, in cutaneously sensitized food allergy. Int Immunol. 2014;26(10):539–49. doi: 10.1093/intimm/dxu058.CrossRefPubMedGoogle Scholar
  14. 14.
    Yoshimoto T, Yasuda K, Tanaka H, et al. Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat Immunol. 2009;10(7):706–12. doi: 10.1038/ni.1737.CrossRefPubMedGoogle Scholar
  15. 15.
    Lodge CJ, Lowe AJ, Gurrin LC, et al. House dust mite sensitization in toddlers predicts current wheeze at age 12 years. J Allergy Clin Immunol. 2011;128(4):782–788.e9. doi: 10.1016/j.jaci.2011.06.038.CrossRefPubMedGoogle Scholar
  16. 16.
    Portelli MA, Hodge E, Sayers I. Genetic risk factors for the development of allergic disease identified by genome-wide association. Clin Exp Allergy. 2015;45(1):21–31. doi: 10.1111/cea.12327.CrossRefPubMedGoogle Scholar
  17. 17.
    Imoto Y, Enomoto H, Fujieda S, et al. S2554X mutation in the filaggrin gene is associated with allergen sensitization in the Japanese population. J Allergy Clin Immunol. 2010;125(2):498–500.e2. doi: 10.1016/j.jaci.2009.10.062.CrossRefPubMedGoogle Scholar
  18. 18.
    Hirota T, Takahashi A, Kubo M, et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat Genet. 2012;44(11):1222–6. doi: 10.1038/ng.2438.CrossRefPubMedGoogle Scholar
  19. 19.
    Esparza-Gordillo J, Weidinger S, Fölster-Holst R, et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet. 2009;41(5):596–601. doi: 10.1038/ng.347.CrossRefPubMedGoogle Scholar
  20. 20.
    Ferreira MAR, Matheson MC, Duffy DL, et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet. 2011;378(9795):1006–14. doi: 10.1016/S0140-6736(11)60874-X.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sleiman PMA, Wang M-L, Cianferoni A, et al. GWAS identifies four novel eosinophilic esophagitis loci. Nat Commun. 2014;5:5593. doi: 10.1038/ncomms6593.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ramasamy A, Curjuric I, Coin LJ, et al. A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J Allergy Clin Immunol. 2011;128(5):996–1005. doi: 10.1016/j.jaci.2011.08.030.CrossRefPubMedGoogle Scholar
  23. 23.
    Bønnelykke K, Matheson MC, Pers TH, et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat Genet. 2013;45(8):902–6. doi: 10.1038/ng.2694.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Edwards JP, Fujii H, Zhou AX, Creemers J, Unutmaz D, Shevach EM. Regulation of the expression of GARP/latent TGF-β1 complexes on mouse T cells and their role in regulatory T cell and Th17 differentiation. J Immunol. 2013;190(11):5506–15. doi: 10.4049/jimmunol.1300199.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Moffatt MF, Gut IG, Demenais F, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363(13):1211–21. doi: 10.1056/NEJMoa0906312.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sakashita M, Yoshimoto T, Hirota T, et al. Association of serum interleukin-33 level and the interleukin-33 genetic variant with Japanese cedar pollinosis. Clin Exp Allergy. 2008;38(12):1875–81. doi: 10.1111/j.1365-2222.2008.03114.x.CrossRefPubMedGoogle Scholar
  27. 27.
    Shida K, Nanno M, Nagata S. Flexible cytokine production by macrophages and T cells in response to probiotic bacteria: a possible mechanism by which probiotics exert multifunctional immune regulatory activities. Gut Microbes. 2011;2(2):109–14. doi: 10.4161/gmic.2.2.15661.CrossRefPubMedGoogle Scholar
  28. 28.
    Boyle RJ, Bath-Hextall FJ, Leonardi-Bee J, Murrell DF, Tang ML. Probiotics for treating eczema. Cochrane Database Syst Rev 2008;(4):CD006135. doi: 10.1002/14651858.CD006135.pub2.
  29. 29.
    Das RR, Singh M, Shafiq N. Probiotics in treatment of allergic rhinitis. World Allergy Organ J. 2010;3(9):239–44. doi: 10.1097/WOX.0b013e3181f234d4.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bousquet J, Lockey R, Malling HJ. Allergen immunotherapy: therapeutic vaccines for allergic diseases. A WHO position paper. J Allergy Clin Immunol. 1998;102(4 Pt 1):558–62. doi: 10.1016/S0091-6749(98)70271-4.CrossRefPubMedGoogle Scholar
  31. 31.
    Francis JN, Till SJ, Durham SR. Induction of IL-10+CD4+CD25+ T cells by grass pollen immunotherapy. J Allergy Clin Immunol. 2003;111(6):1255–61. doi: 10.1067/mai.2003.1570.CrossRefPubMedGoogle Scholar
  32. 32.
    Pajno GB, Barberio G, De Luca F, Morabito L, Parmiani S. Prevention of new sensitizations in asthmatic children monosensitized to house dust mite by specific immunotherapy. A six-year follow-up study. Clin Exp Allergy. 2001;31(9):1392–7. http://www.ncbi.nlm.nih.gov/pubmed/11591189CrossRefPubMedGoogle Scholar
  33. 33.
    Marogna M, Tomassetti D, Bernasconi A, et al. Preventive effects of sublingual immunotherapy in childhood: an open randomized controlled study. Ann Allergy Asthma Immunol. 2008;101(2):206–11. http://www.ncbi.nlm.nih.gov/pubmed/18727478CrossRefPubMedGoogle Scholar
  34. 34.
    Bae JM, Choi YY, Park CO, Chung KY, Lee KH. Efficacy of allergen-specific immunotherapy for atopic dermatitis: a systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol. 2013;132(1):110–7. doi: 10.1016/j.jaci.2013.02.044.CrossRefPubMedGoogle Scholar
  35. 35.
    Inoue Y, Kambara T, Murata N, et al. Effects of oral administration of Lactobacillus acidophilus L-92 on the symptoms and serum cytokines of atopic dermatitis in Japanese adults: a double-blind, randomized, clinical trial. Int Arch Allergy Immunol. 2014;165(4):247–54. doi: 10.1159/000369806.CrossRefPubMedGoogle Scholar
  36. 36.
    Wang I-J, Wang J-Y. Children with atopic dermatitis show clinical improvement after Lactobacillus exposure. Clin Exp Allergy. 2015;45(4):779–87. doi: 10.1111/cea.12489.CrossRefPubMedGoogle Scholar
  37. 37.
    Han Y, Kim B, Ban J, et al. A randomized trial of Lactobacillus plantarum CJLP133 for the treatment of atopic dermatitis. Pediatr Allergy Immunol. 2012;23(7):667–73. doi: 10.1111/pai.12010.CrossRefPubMedGoogle Scholar
  38. 38.
    Drago L, Iemoli E, Rodighiero V, Nicola L, De Vecchi E, Piconi S. Effects of Lactobacillus salivarius LS01 (DSM 22775) treatment on adult atopic dermatitis: a randomized placebo-controlled study. Int J Immunopathol Pharmacol. 2011;24(4):1037–48. http://www.ncbi.nlm.nih.gov/pubmed/22230409CrossRefPubMedGoogle Scholar
  39. 39.
    Moroi M, Uchi S, Nakamura K, et al. Beneficial effect of a diet containing heat-killed Lactobacillus paracasei K71 on adult type atopic dermatitis. J Dermatol. 2011;38(2):131–9. doi: 10.1111/j.1346-8138.2010.00939.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Costa DJ, Marteau P, Amouyal M, et al. Efficacy and safety of the probiotic Lactobacillus paracasei LP-33 in allergic rhinitis: a double-blind, randomized, placebo-controlled trial (GA2LEN Study). Eur J Clin Nutr. 2014;68(5):602–7. doi: 10.1038/ejcn.2014.13.CrossRefPubMedGoogle Scholar
  41. 41.
    Lin W-Y, Fu L-S, Lin H-K, Shen C-Y, Chen Y-J. Evaluation of the effect of Lactobacillus paracasei (HF.A00232) in children (6-13 years old) with perennial allergic rhinitis: a 12-week, double-blind, randomized, placebo-controlled study. Pediatr Neonatol. 2014;55(3):181–8. doi: 10.1016/j.pedneo.2013.10.001.CrossRefPubMedGoogle Scholar
  42. 42.
    Lin T-Y, Chen C-J, Chen L-K, Wen S-H, Jan R-H. Effect of probiotics on allergic rhinitis in Df, Dp or dust-sensitive children: a randomized double blind controlled trial. Indian Pediatr. 2013;50(2):209–13. http://www.ncbi.nlm.nih.gov/pubmed/22728633CrossRefPubMedGoogle Scholar
  43. 43.
    Lue K-H, Sun H-L, Lu K-H, et al. A trial of adding Lactobacillus johnsonii EM1 to levocetirizine for treatment of perennial allergic rhinitis in children aged 7-12 years. Int J Pediatr Otorhinolaryngol. 2012;76(7):994–1001. doi: 10.1016/j.ijporl.2012.03.018.CrossRefPubMedGoogle Scholar
  44. 44.
    Wassenberg J, Nutten S, Audran R, et al. Effect of Lactobacillus paracasei ST11 on a nasal provocation test with grass pollen in allergic rhinitis. Clin Exp Allergy. 2011;41(4):565–73. doi: 10.1111/j.1365-2222.2011.03695.x.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Division of Otorhinolaryngology - Head & Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical ScienceUniversity of FukuiFukuiJapan

Personalised recommendations