Advertisement

Microbiome, Dysbiosis, and Atopic Dermatitis

  • Keiji IwatsukiEmail author
  • Osamu Yamasaki
  • Shin Morizane
Chapter

Abstract

The loss of diversity in a normal skin microbiome known as dysbiosis is observed in most patients with atopic dermatitis (AD). In particular, staphylococcal colonization is correlated with the severity of AD, and it is thought to be a possible trigger for AD. However, the questions of whether staphylococcal colonization precedes the development of AD, and whether the colonization of commensal microbiota is protective against the occurrence of eczema have been controversial. In addition to the genetic skin barrier dysfunctions, virulence factors generated by Staphylococcus species may enhance the impairment of barrier functions, and they may induce allergic inflammation via innate and adaptive immunity. This chapter summarizes the current knowledge on the pathogenic link between the skin microbiome and AD.

Keywords

Skin microbiome Microbiota Staphylococcus Quorum sensing Skin barrier Defensin Cathelicidin 

References

  1. 1.
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.CrossRefGoogle Scholar
  2. 2.
    Grice EA, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–2.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Costello EK, et al. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–7.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sonnenburg GF, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science. 2012;336(6086):1321–5.CrossRefGoogle Scholar
  5. 5.
    Malhotra N, et al. IL-22 derived from γδ T cells restricts Staphylococcus aureus infection of mechanically injured skin. J Allergy Clin Immunol. 2016;138:1098–107.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dominguez-Bello MG, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107:11971–5.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kennedy EA, et al. Skin microbiome before development of atopic dermatitis: early colonization with commensal staphylococci at 2 months is associated with a lower risk of atopic dermatitis at 1 year. J Allergy Clin Immunol. 2017;139(1):166–72.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nakamura Y et al. Evolutionary risk management of agr locus is important for S. aureus adaptation in the skin of atopic dermatitis. 41 JSID program issue 2016 (abstract).Google Scholar
  9. 9.
    Kong HH, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yuki T, et al. Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J Immunol. 2011;187(6):3230–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Lai Y, et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol. 2010;130(9):2211–21.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lai Y, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009;15(12):1377–82.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dubin G, et al. Molecular cloning and biochemical characterisation of proteases from Staphylococcus epidermidis. Biol Chem. 2001;382:1575–82.CrossRefPubMedGoogle Scholar
  14. 14.
    Cogan AL, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol. 2010;130(1):192–200.CrossRefGoogle Scholar
  15. 15.
    Chavanas S, et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet. 2000;25(2):141–2.CrossRefPubMedGoogle Scholar
  16. 16.
    Komatsu N, et al. Elevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides. J Invest Dermatol. 2002;118(3):436–43.CrossRefPubMedGoogle Scholar
  17. 17.
    Nomura T, et al. Unique mutations in the filaggrin gene in Japanese patients with ichthyosis vulgaris and atopic dermatitis. J Allergy Clin Immunol. 2007;119:434–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Kono M, et al. Comprehensive screening for a complete set of Japanese-population-specific filaggrin gene mutations. Allergy. 2014;69:537–40.CrossRefPubMedGoogle Scholar
  19. 19.
    Sekiya A, et al. Compound heterozygotes for filaggrin gene mutations do not always show severe atopic dermatitis. J Eur Acad Dermatol Venereol. 2017;31:158–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Kawasaki H, et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol. 2012;129(6):1538–46.CrossRefPubMedGoogle Scholar
  21. 21.
    Brown SJ, et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol. 2011;127(3):661–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mizuno O, et al. Loss-of-function mutations in the gene encoding filaggrin underlie a Japanese family with food-dependent exercise-induced anaphylaxis. J Eur Acad Dermatol Venereol. 2015;29(4):805–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Brough HA, et al. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J Allergy Clin Immunol. 2015;135(1):164–70.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Komatsu N, et al. Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients. Exp Dermatol. 2007;16(6):513–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Morizane S, et al. TH2 cytokines increase kallikrein 7 expression and function in patients with atopic dermatitis. J Allergy Clin Immunol. 2012;130(1):259–61.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nishio Y, et al. Association between polymorphisms in the SPINK5 gene and atopic dermatitis in the Japanese. Genes Immun. 2003;4(7):515–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Queck SY, et al. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell. 2008;32(1):150–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ohnishi Y, et al. Ceramidase activity in bacterial skin flora as a possible cause of ceramide deficiency in atopic dermatitis. Clin Diagn Lab Immunol. 1999;6(1):101–4.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Arikawa J, et al. Decreased levels of sphingosine, a natural antimicrobial agent, may be associated with vulnerability of the stratum corneum from patients with atopic dermatitis to colonization by Staphylococcus aureus. J Invest Dermatol. 2002;119(2):433–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Imayama S, et al. Reduced secretion of IgA to skin surface of patients with atopic dermatitis. J Allergy Clin Immunol. 1994;94:195–200.CrossRefPubMedGoogle Scholar
  31. 31.
    Kimata H. Increase in dermcidin-derived peptides in sweat of patients with atopic eczema caused by a humorous video. J Psychosm Res. 2007;62(1):57–9.CrossRefGoogle Scholar
  32. 32.
    Rieg S, et al. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J Immunol. 2005;174(12):8003–10.CrossRefPubMedGoogle Scholar
  33. 33.
    Hata TR, Gallo RL. Antimicropeptides, skin infections, and atopic dermatitis. Semin Cutan Med Surg. 2008;27(2):144–50.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Weidenmaier C, et al. Role of teichoic acid in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med. 2004;10(3):243–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Foster TJ. Immune evasion by staphylococci. Nat Rev Microbiol. 2005;3:943–58.CrossRefGoogle Scholar
  36. 36.
    Zhang Q, et al. Staphylococcal lipoteichoic acid inhibits delayed-type hypersensitivity reaction via the platelet-activating factor receptor. J Clin Invest. 2005;115(10):2855–61.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Inoshima N, et al. Genetic requirement for ADAM10 in severe Staphylococcus aureus skin infection. J Invest Dermatol. 2012;132(5):1513–6.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Murthy A, et al. Notch activation by the metalloproteinase ADAM17 regulates myeloproliferation and atopic barrier immunity by suppression epithelial cytokine synthesis. Immunity. 2012;36:105–19.CrossRefPubMedGoogle Scholar
  39. 39.
    Franzke CW, et al. Epidermal ADAM17 maintains the skin barrier by regulating EGFR ligand-dependent terminal keratinocyte differentiation. J Exp Med. 2012;209(6):1105–19.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kobayashi T, et al. Dysbiosis ad Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity. 2015;42:756–66.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dragneva Y, et al. Subcytocidal attack by staphylococcal alpha-toxin activates NF-kappaB and induces interleukin-8 production. Infect Immun. 2001;69(4):2630–5.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rose F, Dahlem G, Guthmann B, et al. Mediator generation and signaling events in alveolar epithelial cells attacked by S. aureus alpha-toxin. Am J Physiol Lung Cell Mol Physiol. 2002;282:L207–14.CrossRefPubMedGoogle Scholar
  43. 43.
    Boquet P, Lemichez E. Bacterial virulence factors targeting Rho GTPases: parasitism or symbiosis? Trends Cell Biol. 2003;13:238–46.CrossRefPubMedGoogle Scholar
  44. 44.
    Nakamura Y, et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397–401.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Syed AK, et al. Staphylococcus aureus phenol-soluble modulins stimulate the release of proinflammatory cytokines from keratinocytes and are required for induction of skin inflammation. Infect Immun. 2015;83(9):3428–37.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nakagawa S et al. Staphylococcus PSMa induces IL-17-dependent skin inflammation through IL-36 and IL-1 secretion from keratinocytes. 41st JSID program issue 2016 (abstract).Google Scholar
  47. 47.
    Bieber T. Atopic dermatitis. N Engl J Med. 2008;358(14):1483–94.CrossRefPubMedGoogle Scholar
  48. 48.
    Hamman H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity. 2015;43(1):29–40.CrossRefGoogle Scholar
  49. 49.
    Howell MD, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol. 2007;120(1):150–5.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kim BE, et al. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol. 2008;126(3):332–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Kobayashi J, et al. Reciprocal regulation of permeability through a cultured keratinocyte sheet by IFN-gamma and IL-4. Cytokine. 2004;28:186–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Hatano Y, et al. Interleukin-4 suppresses the enhancement of ceramide synthesis and cutaneous permeability barrier functions induced by tumor necrosis factor-alpha and interferon-gamma in human epidermis. J Invest Dermatol. 2005;124(4):786–92.CrossRefPubMedGoogle Scholar
  53. 53.
    Ziegler SF, Artis D. Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol. 2010;11(84):289–93.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li M, et al. Retinoid X receptor ablation in adult mouse keratinocytes generates an atopic dermatitis triggered by thymic stromal lymphopoietin. Proc Natl Acad Sci U S A. 2005;102:14795–800.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Nakano H, et al. Persistent secretion of IL-18 in the skin contributes to IgE response in mice. Int Immunol. 2003;15:611–21.CrossRefPubMedGoogle Scholar
  56. 56.
    Morishita Y, et al. Possible influences of Staphylococcus aureus on atopic dermatitis: the colonization features and the effects of staphylococcal enterotoxins. Clin Exp Allergy. 1999;29:1110–7.CrossRefPubMedGoogle Scholar
  57. 57.
    Woytschak J, et al. Type 2 interleukin-4 receptor signaling in neutrophils antagonizes their expansion and migration during infection and inflammation. Immunity. 2016;45(1):172–84.CrossRefPubMedGoogle Scholar
  58. 58.
    Wang ZQ, et al. Staphylococcal enterotoxin B-induced T-cell anergy is mediated by regulatory T cells. Immunology. 1998;94(3):331–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Laouini D, et al. Epicutaneous sensitization with superantigen induces allergic skin inflammation. J Allergy Clin Immunol. 2003;112(5):981–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Ou LS, et al. T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. J Allergy Clin Immunol. 2004;113(4):756–63.CrossRefPubMedGoogle Scholar
  61. 61.
    Morita H, et al. Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol. 2016;138(85):1253–64.CrossRefPubMedGoogle Scholar
  62. 62.
    Moro K, et al. Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat Immunol. 2016;17(1):76–86.CrossRefPubMedGoogle Scholar
  63. 63.
    Bruggen MC, et al. In situ mapping of innate lymphoid cells in human skin: evidence for remarkable differences between normal and inflamed skin. J Invest Dermatol. 2016;136(12):2396–405.CrossRefPubMedGoogle Scholar
  64. 64.
    Natsuga K, et al. Increased bacterial load and expression of antimicrobial peptides in skin of barrier-deficient mice with reduced cancer susceptibility. J Invest Dermatol. 2016:99–106.Google Scholar
  65. 65.
    Ong PY, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347(15):1151–60.CrossRefPubMedGoogle Scholar
  66. 66.
    Huh WK, et al. Dynamic alteration of human beta-defensin 2 localization from cytoplasm to intercellular space in psoriatic skin. J Mol Med. 2002;80(10):678–4.CrossRefPubMedGoogle Scholar
  67. 67.
    Harder J, et al. Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. J Invest Dermatol. 2010;130(5):1355–64.CrossRefPubMedGoogle Scholar
  68. 68.
    Sakagami-Yasui Y, et al. Two arginine residues in the COOH-terminal of human β-defensin-3 constitute an essential motif for antimicrobial activity and IL-6 production. Exp Dermatol. 2017; doi: 10.1111/exd.13361.
  69. 69.
    Wang B, et al. IL-1 β-induced protection of keratinocytes against Staphylococcus aureus-secreted proteases is mediated by human β-defensin 2. J Invest Dermatol. 2017;137(81):95–105.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Minegishi Y, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448:1048–52.CrossRefGoogle Scholar
  71. 71.
    Minegishi Y, Saito M. Cutaneous manifestations of hyperIgE syndrome. Allergy Int. 2012;61(2):191–6.CrossRefGoogle Scholar
  72. 72.
    Maretzky T, et al. ADAM10-mediated E-cadherin release is regulated by proinflammatory cytokines and modulates keratinocyte cohesion in eczematous dermatitis. J Invest Dermatol. 2008;128(7):1737–46.CrossRefPubMedGoogle Scholar
  73. 73.
    Yoshida M, Umene K. Close association of predominant genotype of herpes simplex virus type 1 with eczema herpeticum analyzed using restriction fragment length polymorphism of polymerase chain reaction. J Virol Methods. 2003;109(1):11–6.CrossRefPubMedGoogle Scholar
  74. 74.
    Peng WM, et al. Risk factors of atopic dermatitis patients for eczema herpeticum. J Invest Dermatol. 2007;127(5):1261–3.CrossRefPubMedGoogle Scholar
  75. 75.
    Kawakami Y, et al. Defective natural killer cell activity in a mouse model of eczema herpeticum. J Allergy Clin Immunol. 2017;139(3):997–1006.e10.CrossRefPubMedGoogle Scholar
  76. 76.
    Gao PS, et al. Genetic variants in interferon regulatory factor 2 (IRF2) are associated with atopic dermatitis and eczema herpeticum. J Invest Dermatol. 2012;132:650–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Bin L, et al. Identification of novel gene signatures in patients with atopic dermatitis complicated by eczema herpeticum. J Allergy Clin Immunol. 2014;134(4):848–55.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Staudacher A, et al. Exaggerated IDO1 expression and activity in Langerhans cells from patients with atopic dermatitis upon viral stimulation: a potential predictive biomarker for high risk of eczema herpeticum. Allergy. 2015;70(11):1432–9.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gao PS, et al. Filaggrin mutations that confer risk of atopic dermatitis confer greater risk for eczema herpeticum. J Allergy Clin Immunol. 2009;124(3):507–13.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Gao PS, et al. Genetic variants in thymic stromal lymphopoietin are associated with atopic dermatitis and eczema herpeticum. J Allergy Clin Immunol. 2010;125(6):1403–7.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Bin L, et al. Staphylococcus aureus α-toxin modulates skin host response to viral infection. J Allergy Clin Immunol. 2012;130(3):683–91.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Leung DY, et al. Human atopic dermatitis complicated by eczema herpeticum is associated with abnormalities in IFN-γ response. J Allergy Clin Immunol. 2011;127(4):965–73.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Albenali LH, et al. Vitamin D and antimicrobial peptide levels in patients with atopic dermatitis and atopic dermatitis complicated by eczema herpeticum: a pilot study. J Allergy Clin Immunol. 2016;138(6):1715–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Kim MJ, et al. Vitamin D status and efficacy of vitamin D supplementation in atopic dermatitis: A systematic review and meta-analysis. Nutrients. 2016;8(12.) pii:E789Google Scholar
  85. 85.
    Hanifin J, et al. Guidelines of care for atopic dermatitis, developed in accordance with the American Academy of Dermatology (AAD)/American Academy of Dermatology Association “Administrative Regulations for Evidence-Based Clinical Practice Guidelines”. J Am Acad Dermatol. 2004;50(3):391–404.CrossRefPubMedGoogle Scholar
  86. 86.
    Ring J, et al. Guidelines for treatment of atopic eczema (atopic dermatitis) part I. J Eur Acad Dermatol Venereol. 2010;26(8):1045–60.CrossRefGoogle Scholar
  87. 87.
    Niebuhr M, et al. Antibiotic treatment of cutaneous infections with Staphylococcus aureus in patients with atopic dermatitis: current antimicrobial resistances and susceptibilities. Exp Dermatol. 2008;17(11):953–7.CrossRefPubMedGoogle Scholar
  88. 88.
    Akiyama H, et al. Actions of gluco-oligosaccharide against Staphylococcus aureus. J Dermatol. 2002;29(9):580–6.CrossRefPubMedGoogle Scholar
  89. 89.
    Seite S, et al. Microbiome of affected and unaffected skin of patients with atopic dermatitis before and after emollient treatment. J Drugs Dermatol. 2014;13(11):1365–72.PubMedGoogle Scholar
  90. 90.
    Kawashima M, et al. The usefulness of moisturizers for maintenance of remission in atopic dermatitis. Jpn J Dermatol. 2007;117:1139–45. (In Japanese with English abstract)Google Scholar
  91. 91.
    Fattom A, et al. Safety and immunogenicity of a booster dose of Staphylococcus aureus type 5 and 8 capsular polysaccharide conjugate vaccine (Staph VAX) in hemodialysis patients. Vaccine. 2004;23(5):656–63.CrossRefPubMedGoogle Scholar
  92. 92.
    Domanski PJ, Patel PR, Bayer AS, et al. Characterization of a humanized monoclonal antibody recognizing clumping factor A expressed by Staphylococcus aureus. Infect Immun. 2005;73(8):5229–32.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Frenck RW Jr, et al. Safety, tolerability, and immunogenicity of a 4-antigen Staphylococcus aureus vaccine (SA4Ag): results from a first-in-human randomised, placebo-controlled phase 1/2 study. Vaccine. 2017;35(2):375–84.CrossRefPubMedGoogle Scholar
  94. 94.
    Akiyama H, et al. Confocal laser scanning microscopic observation of glycocalyx production by Staphylococcus aureus in mouse skin: does S. aureus generally produce a biofilm on damaged skin? Br J Dermatol. 2002;147(5):879–85.CrossRefPubMedGoogle Scholar
  95. 95.
    O’Rourke JP, et al. Development of a mimotope vaccine targeting the Staphylococcus aureus quorum sensing pathway. PLoS One. 2014;9(811):e111198.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of DermatologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama CityJapan

Personalised recommendations