Skip to main content

Management of Shock

  • Chapter
  • First Online:
Primary Management of Polytrauma

Abstract

A 37-year-old female passenger was in a 60 km/h motor vehicle collision 30 min ago. She is drowsy but able to tell her name. The patient is complaining of abdominal discomfort. Her blood pressure is 80/65 mmHg, pulse 120, and respiratory rate 30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bereiter DA, Zaid AM, Gann DS. Adrenocorticotropin response to graded blood loss in the cat. Am J Physiol. 1984;247:E398–404.

    CAS  PubMed  Google Scholar 

  2. Bond RF, Manley ES Jr, Green HD. Cutaneous and skeletal muscle vascular responses to hemorrhage and irreversible shock. Am J Physiol. 1967;212:488.

    Article  CAS  PubMed  Google Scholar 

  3. American College of Surgeons Committee in Trauma. Advanced Trauma Life Support for Doctors. Chicago: American College of Surgeons; 2009.

    Google Scholar 

  4. Revell M, Greaves I, Porter K, et al. Endpoints for fluid resuscitation in hemorrhagic shock. J Trauma. 2003;54(5 Suppl):S63–7.

    PubMed  Google Scholar 

  5. Hoyt DB. Fluid resuscitation: the target from an analysis of trauma systems and patient survival. J Trauma. 2003;54(5 Suppl):S31–5.

    PubMed  Google Scholar 

  6. Mizushima Y, Tohira H, Mizobata Y, et al. Fluid resuscitation of trauma patients: how fast is the optimal rate? Am J Emerg Med. 2005;23(7):833–7.

    Article  PubMed  Google Scholar 

  7. Wiiliams JF, Seneff MG, Frideman BC, et al. Use of femoral venous catheters in critically ill adults: prospective study. Crit Care Med. 1991;19:550–3.

    Article  Google Scholar 

  8. Sauaia A, Moore FA, Moore EE, et al. Epidemiology of trauma deaths: a reassessment. J Trauma. 1995;38:185–93.

    Article  CAS  PubMed  Google Scholar 

  9. Shires T, Coln D, Carrico J, et al. Fluid therapy in hemorrhagic shock. Arch Surg. 1964;88:688–93.

    Article  CAS  PubMed  Google Scholar 

  10. Alam HB, Rhee P. New development in fluid resuscitation. Surg Clin North Am. 2007;87(1):55–72. vi

    Article  PubMed  Google Scholar 

  11. Carrico GJ, Canizaro PC, Shires GT, et al. Fluid resuscitation following injury: rationale for the use of balanced salt solutions. Crit Care Med. 1976;4(2):46–54.

    Article  CAS  PubMed  Google Scholar 

  12. Cotton BA, Guy JS, Morris JA Jr, et al. The cellular, metabolic, and systemic consequences of aggressive fluid resuscitation strategies. Shock. 2006;26:115–21.

    Article  CAS  PubMed  Google Scholar 

  13. Holcomb JB, Jenkins D, Rhee P, et al. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma. 2007;62:307–10.

    Article  PubMed  Google Scholar 

  14. Cotton BA, Gunster OL, Isbell J, et al. Damage control hematology: the impact of a trauma exsanguination protocol on survival and blood product utilization. J Trauma. 2008;64:1177–82.

    Article  PubMed  Google Scholar 

  15. Gonzalez EA, Moore FA, Holcomb JB, et al. Fresh frozen plasma should be given earlier to patients requiring massive transfusion. J Trauma. 2007;62:112–9.

    Article  PubMed  Google Scholar 

  16. Nunez TC, Yoing PP, Holocomb JB, et al. Creation, implementation, and maturation of a massive transfusion protocol for the exsanguinating trauma patient. J Trauma. 2010;68(6):1498–505.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cotton BA, Au BK, Nunez TC, et al. Predefined massive transfusion protocols are associated with a reduction in organ failure and post injury complications. J Trauma. 2009;66:41–8.

    Article  PubMed  Google Scholar 

  18. Riskin DJ, Tsai TC, Riskin L, et al. Massive transfusion protocols: the role of aggressive resuscitation versus product ratio in mortality reduction. J Am Coll Surg. 2009;2:198–205.

    Article  Google Scholar 

  19. Borgman MA, Spinella PC, Perkins JG, et al. The ratio of blood products transfused affects mortality in patients receiving massive transfusion at a combat support hospital. J Trauma. 2007;63:805–13.

    Article  PubMed  Google Scholar 

  20. Holcomb JB, Wade CE, Michalek JE, et al. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Ann Surg. 2008;248:447–58.

    PubMed  Google Scholar 

  21. Shaz BH, Dente CJ, Nicholas J, et al. Increased number of coagulation products in relationship to red blood cell products transfused improves mortality in trauma patients. Transfusion. 2010;50:493–500.

    Article  CAS  PubMed  Google Scholar 

  22. Kashuk JL, Moore EE, Milikan JS, et al. Major abdominal vascular trauma-a unified approach. J Trauma. 1982;22:672–9.

    Article  CAS  PubMed  Google Scholar 

  23. Harrigan C, Lucas CE, Ledgerwood AM. The effect of hemorrhagic shock on the clotting cascade in injured patients. J Trauma. 1989;29:1416–21.

    Article  CAS  PubMed  Google Scholar 

  24. Phillips TF, Soulier G, Wilson RF. Outcome of massive transfusion exceeding tow blood volumes in trauma and emergency surgery. J Trauma. 1987;27:903–10.

    Article  CAS  PubMed  Google Scholar 

  25. Brohi K, Cohen MJ, Ganter MT, et al. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245:812–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pepe PE, Dutton RP, Fowler RL. Preoperative resuscitation of the trauma patient. Curr Opin Anesthesiol. 2008;21:216–21.

    Article  Google Scholar 

  27. Bickell WH, Bruttig SP, Millnamow GA, et al. The detrimental effects of intravenous crystalloid after aortotomy in swine. Surgery. 1991;110:529–36

    Google Scholar 

  28. Owens TM, Watson WC, Prough DS, et al. Limiting initial resuscitation of uncontrolled hemorrhage reduces internal bleeding and subsequent volume requirements. J trauma. 1995;39:200–7.

    Article  CAS  Google Scholar 

  29. Revell M, Greaves I, Porter K, et al. Endpoints for fluid resuscitation in hemorrhagic shock. J Trauma. 2003;54(5 suppl):S63–7.

    Google Scholar 

  30. Sarnoff SJ. Myocardial contractility as described by ventricular function curves: observations on Starling’s law of the heart. Physiol Rev. 1988;35:107–22.

    Article  CAS  PubMed  Google Scholar 

  31. Cherpanath TG, Hirsch A, Geerts BF, et al. Predicting fluid responsiveness by passive leg raising: a systematic review and meta-analysis of 23 clinical trials. Crit Care Med. 2016;44(5):981–91.

    Article  PubMed  Google Scholar 

  32. Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32:858–73.

    Article  PubMed  Google Scholar 

  33. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345-1368-77.

    Article  CAS  PubMed  Google Scholar 

  34. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  35. Lucae CE, Ledgerwood AM. Cardiovascular and renal response to hemorrhagic and septic shock. In: Clowes Jr CHA, editor. Trauma, sepsis and shock: the physiological basis of therapy. New York: Marcel Dekker; 1988. p. 87–215.

    Google Scholar 

  36. Cohn SM, Nathens AB, Moore FA, et al. Tissue oxygen saturation predicts the development of organ dysfunction during traumatic shock resuscitation. J Trauma Inj Infect Crit Care. 2007;62:44–54.

    Article  Google Scholar 

  37. Prekker ME, Scott NL, Hart D, et al. Point-of-care ultrasound to estimate central venous pressure: a comparison of three techniques. Crit Care Med. 2013;41:833–41.

    Article  PubMed  Google Scholar 

  38. Barbier C, Loubières Y, Schmit C, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740–6.

    Google Scholar 

  39. Marik PE, Cavallazzi R, Vasu T, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–7.

    Article  PubMed  Google Scholar 

  40. Pinsky MR. Functional haemodynamic monitoring. Curr Opin Crit Care. 2014;20(3):288–93.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hofer CK, Müller SM, Furrer L, et al. Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest;128:848–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nak-Jun Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, NJ., Hong, SK. (2019). Management of Shock. In: Hong, SK., Kim, D., Jeon, S. (eds) Primary Management of Polytrauma . Springer, Singapore. https://doi.org/10.1007/978-981-10-5529-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5529-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5528-7

  • Online ISBN: 978-981-10-5529-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics