Skip to main content

Placental Development and Nutritional Environment

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1012))

Abstract

The placenta is considered to have developed recently in mammalian evolution. While the fundamental function of the placenta, i.e., providing nutrients and oxygen to the fetus and receiving waste products, is the same in all mammals, the morphology of the placenta varies substantially in a species-dependent manner. Therefore, considerable interest exists in understanding placental development and function in mammals from a molecular biological viewpoint. Numerous recent studies have shown that various environmental factors before and during pregnancy, including nutrition, affect placental formation and function and that alterations in placental formation and function can influence the developing fetus and the offspring after birth. To date, the relationship between nutrition and the placenta has been investigated in several species, various model organisms, and humans. In this chapter, we discuss the current knowledge of the placenta and the epigenome and then highlight the effects of nutrition during pregnancy on the placenta and the fetus and on the offspring after birth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benirschke K, Burton GJ, Baergen RN. Pathology of the human placenta. 6th ed. Berlin/Heidelberg: Springer; 2012.

    Book  Google Scholar 

  2. David AL, Jauniaux E. Ultrasound and endocrinological markers of first trimester placentation and subsequent fetal size. Placenta. 2016;40:29–33.

    Article  CAS  PubMed  Google Scholar 

  3. Heinonen S, Taipale P, Saarikoski S. Weights of placentae from small-for-gestational age infants revisited. Placenta. 2001;22:399–404.

    Article  CAS  PubMed  Google Scholar 

  4. Enders AC, Carter AM. What can comparative studies of placental structure tell us? A review. Placenta. 2004;25(Suppl A):S3–9.

    Article  CAS  PubMed  Google Scholar 

  5. Tarrade A, Panchenko P, Junien C, Gabory A. Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J Exp Biol. 2015;218:50–8.

    Article  PubMed  Google Scholar 

  6. Thornburg KL, O’Tierney PF, Louey S. Review: the placenta is a programming agent for cardiovascular disease. Placenta. 2010;31(Suppl):S54–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Monk D. Genomic imprinting in the human placenta. Am J Obstet Gynecol. 2015;213:S152–62.

    Article  PubMed  Google Scholar 

  8. Hanna CW, McFadden DE, Robinson WP. DNA methylation profiling of placental villi from karyotypically normal miscarriage and recurrent miscarriage. Am J Pathol. 2013;182:2276–84.

    Article  CAS  PubMed  Google Scholar 

  9. Ono R, Nakamura K, Inoue K, Naruse M, Usami T, Wakisaka-Saito N, et al. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet. 2006;38:101–6.

    Article  CAS  PubMed  Google Scholar 

  10. Sekita Y, Wagatsuma H, Nakamura K, Ono R, Kagami M, Wakisaka N, et al. Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat Genet. 2008;40:243–8.

    Article  CAS  PubMed  Google Scholar 

  11. Kim J, Frey WD, He H, Kim H, Ekram MB, Bakshi A, et al. Peg3 mutational effects on reproduction and placenta-specific gene families. PLoS One. 2013;8:e83359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moore GE, Ishida M, Demetriou C, Al-Olabi L, Leon LJ, Thomas AC, et al. The role and interaction of imprinted genes in human fetal growth. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370:20140074.

    Article  CAS  Google Scholar 

  13. Court F, Tayama C, Romanelli V, Martin-Trujillo A, Iglesias-Platas I, Okamura K, et al. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res. 2014;24:554–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanchez-Delgado M, Court F, Vidal E, Medrano J, Monteagudo-Sanchez A, Martin-Trujillo A, et al. Human oocyte-derived methylation differences persist in the placenta revealing widespread transient imprinting. PLoS Genet. 2016;12:e1006427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gu Y, Sun J, Groome LJ, Wang Y. Differential miRNA expression profiles between the first and third trimester human placentas. Am J Physiol Endocrinol Metab. 2013;304:E836–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Higashijima A, Miura K, Mishima H, Kinoshita A, Jo O, Abe S, et al. Characterization of placenta-specific microRNAs in fetal growth restriction pregnancy. Prenat Diagn. 2013;33:214–22.

    Article  CAS  PubMed  Google Scholar 

  17. Tang Q, Wu W, Xu X, Huang L, Gao Q, Chen H, et al. miR-141 contributes to fetal growth restriction by regulating PLAG1 expression. PLoS One. 2013;8:e58737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li J, Song L, Zhou L, Wu J, Sheng C, Chen H, et al. A MicroRNA signature in gestational diabetes mellitus associated with risk of Macrosomia. Cell Physiol Biochem. 2015;37:243–52.

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Chen L, Tang Q, Wu W, Gu H, Liu L, et al. The role, mechanism and potentially novel biomarker of microRNA-17-92 cluster in macrosomia. Sci Rep. 2015;5:17212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Whitehead CL, McNamara H, Walker SP, Alexiadis M, Fuller PJ, Vickers DK, et al. Identifying late-onset fetal growth restriction by measuring circulating placental RNA in the maternal blood at 28 weeks’ gestation. Am J Obstet Gynecol. 2016;214:521 e1-8.

    Google Scholar 

  21. Suzuki S, Ono R, Narita T, Pask AJ, Shaw G, Wang C, et al. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet. 2007;3:e55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Naruse M, Ono R, Irie M, Nakamura K, Furuse T, Hino T, et al. Sirh7/Ldoc1 knockout mice exhibit placental P4 overproduction and delayed parturition. Development. 2014;141:4763–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cornelis G, Vernochet C, Carradec Q, Souquere S, Mulot B, Catzeflis F, et al. Retroviral envelope gene captures and syncytin exaptation for placentation in marsupials. Proc Natl Acad Sci U S A. 2015;112:E487–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bjerregaard B, Lemmen JG, Petersen MR, Ostrup E, Iversen LH, Almstrup K, et al. Syncytin-1 and its receptor is present in human gametes. J Assist Reprod Genet. 2014;31:533–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nelissen EC, van Montfoort AP, Dumoulin JC, Evers JL. Epigenetics and the placenta. Hum Reprod Update. 2011;17:397–417.

    Article  CAS  PubMed  Google Scholar 

  26. Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23:5293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cropley JE, Suter CM, Beckman KB, Martin DI. Germ-line epigenetic modification of the murine a vy allele by nutritional supplementation. Proc Natl Acad Sci U S A. 2006;103:17308–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, et al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science. 2014;1255903:345.

    Google Scholar 

  29. Coan PM, Vaughan OR, Sekita Y, Finn SL, Burton GJ, Constancia M, et al. Adaptations in placental phenotype support fetal growth during undernutrition of pregnant mice. J Physiol. 2010;588:527–38.

    Article  CAS  PubMed  Google Scholar 

  30. Gallo P, Cioffi L, Limauro R, Farris E, Bianco V, Sassi R, et al. SGA children in pediatric primary care: what is the best choice, large or small? A 10-year prospective longitudinal study. Glob Pediatr Health. 2016;3:2333794X16659993.

    PubMed  PubMed Central  Google Scholar 

  31. Chiavaroli V, Giannini C, D’Adamo E, de Giorgis T, Chiarelli F, Mohn A. Insulin resistance and oxidative stress in children born small and large for gestational age. Pediatrics. 2009;124:695–702.

    Article  PubMed  Google Scholar 

  32. Matta J, Carette C, Levy Marchal C, Bertrand J, Petera M, Zins M, et al. Weight for gestational age and metabolically healthy obesity in adults from the Haguenau cohort. BMJ Open. 2016;6:e011367.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mericq V, Martinez-Aguayo A, Uauy R, Iniguez G, Van der Steen M, Hokken-Koelega A. Long-term metabolic risk among children born premature or small for gestational age. Nat Rev Endocrinol. 2017;13:50–62.

    Article  CAS  PubMed  Google Scholar 

  34. Han DY, Murphy R, Morgan AR, Lam WJ, Thompson JM, Wall CR, et al. Reduced genetic influence on childhood obesity in small for gestational age children. BMC Med Genet. 2013;14:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Farrar D, Simmonds M, Bryant M, Sheldon TA, Tuffnell D, Golder S, et al. Hyperglycaemia and risk of adverse perinatal outcomes: systematic review and meta-analysis. BMJ. 2016;354:i4694.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lin XH, Wu DD, Gao L, Zhang JY, Pan HT, Wang H, et al. Altered DNA methylation in neonates born large-for-gestational-age is associated with cardiometabolic risk in children. Oncotarget. 2016;7:86511.

    PubMed  PubMed Central  Google Scholar 

  37. El Hajj N, Pliushch G, Schneider E, Dittrich M, Muller T, Korenkov M, et al. Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes. 2013;62:1320–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cote S, Gagne-Ouellet V, Guay SP, Allard C, Houde AA, Perron P, et al. PPARGC1alpha gene DNA methylation variations in human placenta mediate the link between maternal hyperglycemia and leptin levels in newborns. Clin Epigenetics. 2016;8:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Reichetzeder C, Dwi Putra SE, Pfab T, Slowinski T, Neuber C, Kleuser B, et al. Increased global placental DNA methylation levels are associated with gestational diabetes. Clin Epigenetics. 2016;8:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen PY, Ganguly A, Rubbi L, Orozco LD, Morselli M, Ashraf D, et al. Intrauterine calorie restriction affects placental DNA methylation and gene expression. Physiol Genomics. 2013;45:565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yura S, Itoh H, Sagawa N, Yamamoto H, Masuzaki H, Nakao K, et al. Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell Metab. 2005;1:371–8.

    Article  CAS  PubMed  Google Scholar 

  42. Diaz M, Garcia C, Sebastiani G, de Zegher F, Lopez-Bermejo A, Ibanez L. Placental and cord blood methylation of genes involved in energy homeostasis: association with fetal growth and neonatal body composition. Diabetes. 2017;66:779–84.

    Article  CAS  PubMed  Google Scholar 

  43. Caviedes L, Iniguez G, Hidalgo P, Castro JJ, Castano E, Llanos M, et al. Relationship between folate transporters expression in human placentas at term and birth weights. Placenta. 2016;38:24–8.

    Article  CAS  PubMed  Google Scholar 

  44. Geng Y, Gao R, Chen X, Liu X, Liao X, Li Y, et al. Folate deficiency impairs decidualization and alters methylation patterns of the genome in mice. Mol Hum Reprod. 2015;21:844–56.

    Article  CAS  PubMed  Google Scholar 

  45. Ahmed T, Fellus I, Gaudet J, MacFarlane AJ, Fontaine-Bisson B, Bainbridge SA. Effect of folic acid on human trophoblast health and function in vitro. Placenta. 2016;37:7–15.

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Gao R, Liu X, Chen X, Liao X, Geng Y, et al. Folate deficiency could restrain decidual angiogenesis in pregnant mice. Forum Nutr. 2015;7:6425–45.

    CAS  Google Scholar 

  47. Ge J, Wang J, Zhang F, Diao B, Song ZF, Shan LL, et al. Correlation between MTHFR gene methylation and pre-eclampsia, and its clinical significance. Genet Mol Res. 2015;14:8021–8.

    Article  CAS  PubMed  Google Scholar 

  48. Kawai T, Yamada T, Abe K, Okamura K, Kamura H, Akaishi R, et al. Increased epigenetic alterations at the promoters of transcriptional regulators following inadequate maternal gestational weight gain. Sci Rep. 2015;5:14224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1:1077–81.

    Article  CAS  PubMed  Google Scholar 

  50. Painter RC, de Rooij SR, Bossuyt PM, Simmers TA, Osmond C, Barker DJ, et al. Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr. 2006;84:322–7. quiz 466-7

    Article  PubMed  CAS  Google Scholar 

  51. Ravelli AC, van Der Meulen JH, Osmond C, Barker DJ, Bleker OP. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr. 1999;70:811–6.

    Article  CAS  PubMed  Google Scholar 

  52. Syddall HE, Sayer AA, Simmonds SJ, Osmond C, Cox V, Dennison EM, et al. Birth weight, infant weight gain, and cause-specific mortality: the Hertfordshire Cohort Study. Am J Epidemiol. 2005;161:1074–80.

    Article  CAS  PubMed  Google Scholar 

  53. Roseboom TJ, Painter RC, de Rooij SR, van Abeelen AF, Veenendaal MV, Osmond C, et al. Effects of famine on placental size and efficiency. Placenta. 2011;32:395–9.

    Article  CAS  PubMed  Google Scholar 

  54. Barker DJ, Thornburg KL, Osmond C, Kajantie E, Eriksson JG. The surface area of the placenta and hypertension in the offspring in later life. Int J Dev Biol. 2010;54:525–30.

    Article  PubMed  PubMed Central  Google Scholar 

  55. van Abeelen AF, de Rooij SR, Osmond C, Painter RC, Veenendaal MV, Bossuyt PM, et al. The sex-specific effects of famine on the association between placental size and later hypertension. Placenta. 2011;32:694–8.

    Article  PubMed  Google Scholar 

  56. Reynolds RM, Godfrey KM, Barker M, Osmond C, Phillips DI. Stress responsiveness in adult life: influence of mother’s diet in late pregnancy. J Clin Endocrinol Metab. 2007;92:2208–10.

    Article  CAS  PubMed  Google Scholar 

  57. Herrick K, Phillips DI, Haselden S, Shiell AW, Campbell-Brown M, Godfrey KM. Maternal consumption of a high-meat, low-carbohydrate diet in late pregnancy: relation to adult cortisol concentrations in the offspring. J Clin Endocrinol Metab. 2003;88:3554–60.

    Article  CAS  PubMed  Google Scholar 

  58. Kanitz E, Otten W, Tuchscherer M, Grabner M, Brussow KP, Rehfeldt C, et al. High and low protein ratio carbohydrate dietary ratios during gestation alter maternal-fetal cortisol regulation in pigs. PLoS One. 2012;7:e52748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Metges CC, Gors S, Lang IS, Hammon HM, Brussow KP, Weitzel JM, et al. Low and high dietary protein:carbohydrate ratios during pregnancy affect materno-fetal glucose metabolism in pigs. J Nutr. 2014;144:155–63.

    Article  CAS  PubMed  Google Scholar 

  60. Paquette AG, Houseman EA, Green BB, Lesseur C, Armstrong DA, Lester B, et al. Regions of variable DNA methylation in human placenta associated with newborn neurobehavior. Epigenetics. 2016;11:603–13.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Taniguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taniguchi, K., Kawai, T., Hata, K. (2018). Placental Development and Nutritional Environment. In: Kubota, T., Fukuoka, H. (eds) Developmental Origins of Health and Disease (DOHaD) . Advances in Experimental Medicine and Biology, vol 1012. Springer, Singapore. https://doi.org/10.1007/978-981-10-5526-3_7

Download citation

Publish with us

Policies and ethics