Gaining Insight into Plant Responses to Beneficial and Pathogenic Microorganisms Using Metabolomic and Transcriptomic Approaches

  • Fernando Matías Romero
  • María Marina
  • Fernando Luis Pieckenstain
  • Franco Ruben Rossi
  • María Elisa Gonzalez
  • Paulina Vignatti
  • Andrés Gárriz
Chapter

Abstract

Plants are constantly interacting with microorganisms. Many of them have the potential to cause disease, while many other may establish beneficial interactions where plants enhance their ability to incorporate important nutrients and improve disease resistance. During these interactions, plants must regulate the expression of thousands of genes, which ultimately triggers distinct hormonal signaling pathways and affects the concentration of numerous metabolites. Transcriptomics and metabolomics have played a pivotal role in identifying the genes and metabolites involved in such responses, which has given crucial hints to refine our current strategies for plant protection and crop yield improvement. However, there is still a gap on our knowledge on many features that distinguish the interplay between plants and microorganisms. This chapter initially discusses the contributions of these high-throughput technologies to the understanding of this field of research and ends with future prospects in the search for interaction-specific biomarker genes and metabolites.

Keywords

Transcriptomics Metabolomics Plant-microobe interactions 

References

  1. Abraham A, Philip S, Kuruvilla Jacob C, Jayachandran K (2013) Novel bacterial endophytes from Hevea brasiliensis as biocontrol agent against Phytophthora leaf fall disease. BioControl 58:675–684. doi:10.1007/s10526-013-9516-0 CrossRefGoogle Scholar
  2. Aliferis KA, Jabaji S (2012) FT-ICR/MS and GC-EI/MS metabolomics networking unravels global potato sprout's responses to Rhizoctonia solani infection. PLoS One 7:e42576. doi:10.1371/journal.pone.0042576 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allwood JW, Clarke A, Goodacre R, Mur LA (2010) Dual metabolomics: a novel approach to understanding plant-pathogen interactions. Phytochemistry 71:590–597. doi:10.1016/j.phytochem.2010.01.006 PubMedCrossRefGoogle Scholar
  4. Anderson JP, Gleason CA, Foley RC, Thrall PH, Burdon JB, Singh KB (2010) Plants versus pathogens: an evolutionary arms race. Funct Plant Biol 37:499–512. doi:10.1071/FP09304 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Asai S, Shirasu K (2015) Plant cells under siege: plant immune system versus pathogen effectors. Curr Opin Plant Biol 28:1–8. doi:10.1016/j.pbi.2015.08.008 PubMedCrossRefGoogle Scholar
  6. Baebler S, Krecic-Stres H, Rotter A, Kogovsek P, Cankar K, Kok EJ, Gruden K, Kovac M, Zel J, Pompe-Novak M, Ravnikar M (2009) PVY(NTN) elicits a diverse gene expression response in different potato genotypes in the first 12 h after inoculation. Mol Plant Pathol 10:263–275. doi:10.1111/j.1364-3703.2008.00530.x PubMedCrossRefGoogle Scholar
  7. Bagnaresi P, Biselli C, Orru L, Urso S, Crispino L, Abbruscato P, Piffanelli P, Lupotto E, Cattivelli L, Vale G (2012) Comparative transcriptome profiling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. PLoS One 7:e51609. doi:10.1371/journal.pone.0051609 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bai TT, Xie WB, Zhou PP, ZL W, Xiao WC, Zhou L, Sun J, Ruan XL, Li HP (2013) Transcriptome and expression profile analysis of highly resistant and susceptible banana roots challenged with Fusarium oxysporum f. sp. cubense tropical race 4. PLoS One 8:e73945. doi:10.1371/journal.pone.0073945 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Balmer A, Pastor V, Gamir J, Flors V, Mauch-Mani B (2015) The ‘prime-ome’: towards a holistic approach to priming. Trends Plant Sci 20:443–452. doi:10.1016/j.tplants.2015.04.002 PubMedCrossRefGoogle Scholar
  10. Beets CA, Huang JC, Madala NE, Dubery I (2012) Activation of camalexin biosynthesis in Arabidopsis thaliana in response to perception of bacterial lipopolysaccharides: a gene-to-metabolite study. Planta 236:261–272. doi:10.1007/s00425-012-1606-1 PubMedCrossRefGoogle Scholar
  11. Bengtsson T, Weighill D, Proux-Wera E, Levander F, Resjo S, Burra DD, Moushib LI, Hedley PE, Liljeroth E, Jacobson D, Alexandersson E, Andreasson E (2014) Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach. BMC Genomics 15:315–334. doi:10.1186/1471-2164-15-315 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bernoux M, Ellis JG, Dodds PN (2011) New insights in plant immunity signaling activation. Curr Opin Plant Biol 14:512–518. doi:10.1016/j.pbi.2011.05.005 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, DeLucia EH (2010) Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ 33:1597–1613. doi:10.1111/j.1365-3040.2010.02167.x PubMedCrossRefGoogle Scholar
  14. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350. doi:10.1016/S1369-5266(00)00183-7 PubMedCrossRefGoogle Scholar
  15. Bollina V, Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S, Faubert D, Hamzehzarghani H (2010) Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight. Mol Plant Pathol 11:769–782. doi:10.1111/j.1364-3703.2010.00643.x PubMedGoogle Scholar
  16. Bordenave CD, Escaray FJ, Menendez AB, Serna E, Carrasco P, Ruiz OA, Garriz A (2013) Defense responses in two ecotypes of Lotus japonicus against non-pathogenic Pseudomonas syringae. PLoS One 8:e83199. doi:10.1371/journal.pone.0083199 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brotman Y, Lisec J, Meret M, Chet I, Willmitzer L, Viterbo A (2012) Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158:139–146. doi:10.1099/mic.0.052621-0 PubMedCrossRefGoogle Scholar
  18. Cartieaux F, Thibaud M-C, Zimmerli L, Lessard P, Sarrobert C, David P, Gerbaud A, Robaglia C, Somerville S, Nussaume L (2003) Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. Plant J 36:177–188. doi:10.1046/j.1365-313X.2003.01867.x PubMedCrossRefGoogle Scholar
  19. Chen F, Yuan Y, Li Q, He Z (2007) Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics 7:1529–1539. doi:10.1002/pmic.200500765 PubMedCrossRefGoogle Scholar
  20. Chen T, Lv Y, Zhao T, Li N, Yang Y, Yu W, He X, Liu T, Zhang B (2013) Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS One 8:e80816. doi:10.1371/journal.pone.0080816 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cho S-M, Kang BR, Kim YC (2013) Transcriptome analysis of induced systemic drought tolerance elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana. Plant Pathol J 29:209–220. doi:10.5423/PPJ.SI.07.2012.0103 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Coaker GL, Willard B, Kinter M, Stockinger EJ, Francis DM (2004) Proteomic analysis of resistance mediated by Rcm 2.0 and Rcm 5.1, two loci controlling resistance to bacterial canker of tomato. Mol Plant-Microbe Interact 17:1019–1028. doi:10.1094/MPMI.2004.17.9.1019 PubMedCrossRefGoogle Scholar
  23. De Vos M, Van Oosten VR, Van Poecke RM, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC, Dicke M, Pieterse CM (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact 18:923–937. doi:10.1094/MPMI-18-0923 PubMedCrossRefGoogle Scholar
  24. Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, Osorio S, Tohge T, Fernie AR, Feussner I, Feussner K, Meinicke P, Stierhof YD, Schwarz H, Macek B, Mann M, Kahmann R (2011) Metabolic priming by a secreted fungal effector. Nature 478:395–398. doi:10.1038/nature10454 PubMedCrossRefGoogle Scholar
  25. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548. doi:10.1038/nrg2812 PubMedCrossRefGoogle Scholar
  26. Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel B, Poree F, Stitt M, Pons-Kuhnemann J, Sonnewald U, Kahmann R, Kamper J (2008) Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J 56:181–195. doi:10.1111/j.1365-313X.2008.03590.x PubMedCrossRefGoogle Scholar
  27. Essmann J, Schmitz-Thom I, Schon H, Sonnewald S, Weis E, Scharte J (2008) RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco. Plant Physiol 147:1288–1299. doi:10.1104/pp.108.121418 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fan H, Sun H, Wang Y, Zhang Y, Wang X, Li D, Yu J, Han C (2014) Deep sequencing-based transcriptome profiling reveals comprehensive insights into the responses of Nicotiana benthamiana to beet necrotic yellow vein virus infections containing or lacking RNA4. PLoS One 9:e85284. doi:10.1371/journal.pone.0085284 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Feussner I, Polle A (2015) What the transcriptome does not tell—proteomics and metabolomics are closer to the plants’ patho-phenotype. Curr Opin Plant Biol 26:26–31. doi:10.1016/j.pbi.2015.05.023 PubMedCrossRefGoogle Scholar
  30. Floerl S, Majcherczyk A, Possienke M, Feussner K, Tappe H, Gatz C, Feussner I, Kues U, Polle A (2012) Verticillium longisporum infection affects the leaf apoplastic proteome, metabolome, and cell wall properties in Arabidopsis thaliana. PLoS One 7:e31435. doi:10.1371/journal.pone.0031435 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gamir J, Pastor V, Cerezo M, Flors V (2012) Identification of indole-3-carboxylic acid as mediator of priming against Plectosphaerella cucumerina. Plant Physiol Biochem 61:169–179. doi:10.1016/j.plaphy.2012.10.004 PubMedCrossRefGoogle Scholar
  32. Gamir J, Pastor V, Kaever A, Cerezo M, Flors V (2014) Targeting novel chemical and constitutive primed metabolites against Plectosphaerella cucumerina. Plant J 78:227–240. doi:10.1111/tpj.12465 PubMedCrossRefGoogle Scholar
  33. Garg R, Tyagi AK, Jain M (2012) Microarray analysis reveals overlapping and specific transcriptional responses to different plant hormones in rice. Plant Signal Behav 7:951–956. doi:10.4161/psb.20910 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Giovannetti M, Mari A, Novero M, Bonfante P (2015) Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates. Front Plant Sci 6:480. doi:10.3389/fpls.2015.00480 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227. doi:10.1146/annurev.phyto.43.040204.135923 PubMedCrossRefGoogle Scholar
  36. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117. doi:10.1139/m95-015 CrossRefGoogle Scholar
  37. Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y, Takahashi H, Hirai MY, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55:526–542. doi:10.1111/j.0960-7412.2008.03510.x PubMedCrossRefGoogle Scholar
  38. Gonzalez ME, Marco F, Minguet EG, Carrasco-Sorli P, Blázquez MA, Carbonell J, Ruiz OA, Pieckenstain FL (2011) Perturbation of spermine synthase gene expression and transcript profiling provide new insights on the role of the tetraamine spermine in Arabidopsis defense against Pseudomonas viridiflava. Plant Physiol 156:2266–2277. doi:10.1104/pp.110.171413 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212. doi:10.1111/j.1469-8137.2008.02725.x PubMedCrossRefGoogle Scholar
  40. Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ (2012) Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS One 7:e40695. doi:10.1371/journal.pone.0040695 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153. doi:10.1146/annurev.phyto.41.052002.095656 PubMedCrossRefGoogle Scholar
  42. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914. doi:10.1139/m97-131 CrossRefGoogle Scholar
  43. Heuberger AL, Robison FM, Lyons SM, Broeckling CD, Prenni JE (2014) Evaluating plant immunity using mass spectrometry-based metabolomics workflows. Front Plant Sci 5:291. doi:10.3389/fpls.2014.00291 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hoa LT-P, Nomura M, Kajiwara H, Day DA, Tajima S (2004) Proteomic analysis on symbiotic differentiation of mitochondria in soybean nodules. Plant Cell Physiol 45:300–308. doi:10.1093/pcp/pch035 CrossRefGoogle Scholar
  45. Hogslund N, Radutoiu S, Krusell L, Voroshilova V, Hannah MA, Goffard N, Sanchez DH, Lippold F, Ott T, Sato S, Tabata S, Liboriussen P, Lohmann GV, Schauser L, Weiller GF, Udvardi MK, Stougaard J (2009) Dissection of symbiosis and organ development by integrated transcriptome analysis of Lotus japonicus mutant and wild-type plants. PLoS One 4:e6556. doi:10.1371/journal.pone.0006556 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Huang J, Wei Z, Tan S, Mei X, Yin S, Shen Q, Xu Y (2013) The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. Appl Soil Ecol 72:79–84. doi:10.1016/j.apsoil.2013.05.017 CrossRefGoogle Scholar
  47. Jobic C, Boisson AM, Gout E, Rascle C, Fevre M, Cotton P, Bligny R (2007) Metabolic processes and carbon nutrient exchanges between host and pathogen sustain the disease development during sunflower infection by Sclerotinia sclerotiorum. Planta 226:251–265. doi:10.1007/s00425-006-0470-2 PubMedCrossRefGoogle Scholar
  48. Jones AM, Thomas V, Bennett MH, Mansfield J, Grant M (2006) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142:1603–1620. doi:10.1104/pp.106.086231 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jones AME, Thomas V, Truman B, Lilley K, Mansfield J, Grant M (2004) Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. Phytochemistry 65:1805–1816. doi:10.1016/j.phytochem.2004.04.005 PubMedCrossRefGoogle Scholar
  50. Kishi-Kaboshi M, Okada K, Kurimoto L, Murakami S, Umezawa T, Shibuya N, Yamane H, Miyao A, Takatsuji H, Takahashi A, Hirochika H (2010) A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J 63:599–612. doi:10.1111/j.1365-313X.2010.04264.x PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kloepper JW, Rodríguez-Ubana R, Zehnder GW, Murphy JF, Sikora E, Fernández C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21–26. doi:10.1071/ap99003 CrossRefGoogle Scholar
  52. Kobayashi D, Palumbo J (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White J (eds) Microbial endophytes. CRC, Boca Raton, pp 199–233Google Scholar
  53. Konig S, Feussner K, Kaever A, Landesfeind M, Thurow C, Karlovsky P, Gatz C, Polle A, Feussner I (2014) Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. New Phytol 202:823–837. doi:10.1111/nph.12709 PubMedCrossRefGoogle Scholar
  54. Kopka J, Fernie A, Weckwerth W, Gibon Y, Stitt M (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biol 5:109. doi:10.1186/gb-2004-5-6-109 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Krause A, Broughton WJ (1992) Proteins associated with root-hair deformation and nodule initiation in Vigna unguiculata. Mol Plant-Microbe Interact 5:96–103CrossRefGoogle Scholar
  56. Kumaraswamy GK, Kushalappa AC, Choo TM, Dion Y, Rioux S (2012) Differential metabolic response of barley genotypes, varying in resistance, to trichothecene-producing and -nonproducing (tri5−) isolates of Fusarium graminearum. Plant Pathol 61:509–521. doi:10.1111/j.1365-3059.2011.02528.x CrossRefGoogle Scholar
  57. Kwon YS, Ryu C-M, Lee S, Park HB, Han KS, Lee JH, Lee K, Chung WS, Jeong M-J, Kim HK, Bae D-W (2010) Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232:1355–1370. doi:10.1007/s00425-010-1259-x PubMedCrossRefGoogle Scholar
  58. Lahrmann U, Strehmel N, Langen G, Frerigmann H, Leson L, Ding Y, Scheel D, Herklotz S, Hilbert M, Zuccaro A (2015) Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity. New Phytol 207:841–857. doi:10.1111/nph.13411 PubMedCrossRefGoogle Scholar
  59. Lakshmanan V, Castaneda R, Rudrappa T, Bais H (2013) Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux. Planta 238:657–668. doi:10.1007/s00425-013-1920-2 PubMedCrossRefGoogle Scholar
  60. Larriba E, Jaime MLA, Nislow C, Martín-Nieto J, Lopez-Llorca L (2015) Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response. J Plant Res 128:665–678. doi:10.1007/s10265-015-0731-x PubMedCrossRefGoogle Scholar
  61. Lodha TD, Basak J (2012) Plant-pathogen interactions: what microarray tells about it? Mol Biotechnol 50:87–97. doi:10.1007/s12033-011-9418-2 PubMedCrossRefGoogle Scholar
  62. López-Ráez JA, Verhage A, Fernández I, García JM, Azcón-Aguilar C, Flors V, Pozo MJ (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2601. doi:10.1093/jxb/erq089 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Luge T, Kube M, Freiwald A, Meierhofer D, Seemüller E, Sauer S (2014) Transcriptomics assisted proteomic analysis of Nicotiana occidentalis infected by Candidatus Phytoplasma mali strain AT. Proteomics 14:1882–1889. doi:10.1002/pmic.201300551 PubMedCrossRefGoogle Scholar
  64. Luna MF, Aprea J, Crespo JM, Boiardi JL (2012) Colonization and yield promotion of tomato by Gluconacetobacter diazotrophicus. Appl Soil Ecol 61:225–229. doi:10.1016/j.apsoil.2011.09.002 CrossRefGoogle Scholar
  65. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, TGd R, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. doi:10.1038/nature11237 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Madala NE, Steenkamp PA, Piater LA, Dubery IA (2013) Metabolomic analysis of isonitrosoacetophenone-induced perturbations in phenolic metabolism of Nicotiana tabacum cells. Phytochemistry 94:82–90. doi:10.1016/j.phytochem.2013.05.010 PubMedCrossRefGoogle Scholar
  67. Magbanua ZV, Arick M II, Buza T, Hsu CY, Showmaker KC, Chouvarine P, Deng P, Peterson DG, Lu S (2014) Transcriptomic dissection of the rice-Burkholderia glumae interaction. BMC Genomics 15:755. doi:10.1186/1471-2164-15-755 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mahmood T, Jan A, Kakishima M, Komatsu S (2006) Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades. Proteomics 6:6053–6065. doi:10.1002/pmic.200600470 PubMedCrossRefGoogle Scholar
  69. Mathys J, De Cremer K, Timmermans P, Van Kerkhove S, Lievens B, Vanhaecke M, Cammue B, De Coninck B (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:108. doi:10.3389/fpls.2012.00108 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Maunoury N, Redondo-Nieto M, Bourcy M, Van de Velde W, Alunni B, Laporte P, Durand P, Agier N, Marisa L, Vaubert D, Delacroix H, Duc G, Ratet P, Aggerbeck L, Kondorosi E, Mergaert P (2010) Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS One 5:e9519. doi:10.1371/journal.pone.0009519 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Miché L, Battistoni F, Gemmer S, Belghazi M, Reinhold-Hurek B (2006) Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant-Microbe Interact 19:502–511. doi:10.1094/MPMI-19-0502 PubMedCrossRefGoogle Scholar
  72. Morán-Diez E, Rubio B, Domínguez S, Hermosa R, Monte E, Nicolás C (2012) Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum. J Plant Physiol 169:614–620. doi:10.1016/j.jplph.2011.12.016 PubMedCrossRefGoogle Scholar
  73. Moreau S, Verdenaud M, Ott T, Letort S, de Billy F, Niebel A, Gouzy J, de Carvalho-Niebel F, Gamas P (2011) Transcription reprogramming during root nodule development in Medicago truncatula. PLoS One 6:e16463. doi:10.1371/journal.pone.0016463 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Natera SHA, Guerreiro N, Djordjevic MA (2000) Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Mol Plant-Microbe Interact 13:995–1009. doi:10.1094/MPMI.2000.13.9.995 PubMedCrossRefGoogle Scholar
  75. Navarova H, Bernsdorff F, Doring AC, Zeier J (2012) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123–5141. doi:10.1105/tpc.112.103564 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475. doi:10.1016/j.cell.2006.05.050 PubMedCrossRefGoogle Scholar
  77. Okamoto M, Tsuboi Y, Goda H, Yoshizumi T, Shimada Y, Hirayama T (2012) Multiple hormone treatment revealed novel cooperative relationships between abscisic acid and biotic stress hormones in cultured cells. Plant Biotechnol 29:19–34. doi:10.5511/plantbiotechnology.11.1130a CrossRefGoogle Scholar
  78. Okmen B, Doehlemann G (2014) Inside plant: biotrophic strategies to modulate host immunity and metabolism. Curr Opin Plant Biol 20:19–25. doi:10.1016/j.pbi.2014.03.011 PubMedCrossRefGoogle Scholar
  79. Panter S, Thomson R, de Bruxelles G, Laver D, Trevaskis B, Udvardi M (2000) Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules. Mol Plant-Microbe Interact 13:325–333. doi:10.1094/MPMI.2000.13.3.325 PubMedCrossRefGoogle Scholar
  80. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775. doi:10.1038/nrmicro1987 PubMedCrossRefGoogle Scholar
  81. Pedras MS, Yaya EE (2015) Plant chemical defenses: are all constitutive antimicrobial metabolites phytoanticipins? Nat Prod Commun 10:209–218PubMedGoogle Scholar
  82. Peluffo L, Lia V, Troglia C, Maringolo C, Norma P, Escande A, Esteban Hopp H, Lytovchenko A, Fernie AR, Heinz R, Carrari F (2010) Metabolic profiles of sunflower genotypes with contrasting response to Sclerotinia sclerotiorum infection. Phytochemistry 71:70–80. doi:10.1016/j.phytochem.2009.09.018 PubMedCrossRefGoogle Scholar
  83. Petriccione M, Di Cecco I, Arena S, Scaloni A, Scortichini M (2013) Proteomic changes in Actinidia chinensis shoot during systemic infection with a pandemic Pseudomonas syringae pv. actinidiae strain. J Proteome 78:461–476. doi:10.1016/j.jprot.2012.10.014 CrossRefGoogle Scholar
  84. Petriccione M, Salzano AM, Di Cecco I, Scaloni A, Scortichini M (2014) Proteomic analysis of the Actinidia deliciosa leaf apoplast during biotrophic colonization by Pseudomonas syringae pv. actinidiae. J Proteome 101:43–62. doi:10.1016/j.jprot.2014.01.030 CrossRefGoogle Scholar
  85. Pieterse CMJ, Van Pelt JA, Ton J, Parchmann S, Mueller MJ, Buchala AJ, Métraux J-P, Van Loon LC (2000) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–134. doi:10.1006/pmpp.2000.0291 CrossRefGoogle Scholar
  86. Pieterse CMJ, van Wees SCM, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580PubMedPubMedCentralCrossRefGoogle Scholar
  87. Planchamp C, Glauser G, Mauch-Mani B (2015) Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front Plant Sci 5:719. doi:10.3389/fpls.2014.00719 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Popp C, Ott T (2011) Regulation of signal transduction and bacterial infection during root nodule symbiosis. Curr Opin Plant Biol 14:458–467. doi:10.1016/j.pbi.2011.03.016 PubMedCrossRefGoogle Scholar
  89. Poupin MJ, Timmermann T, Vega A, Zuniga A, Gonzalez B (2013) Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One 8:e69435. doi:10.1371/journal.pone.0069435 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Prayitno J, Imin N, Rolfe BG, Mathesius U (2006) Identification of ethylene-mediated protein changes during nodulation in Medicago truncatula using proteome analysis. J Proteome Res 5:3084–3095. doi:10.1021/pr0602646 PubMedCrossRefGoogle Scholar
  91. Prell J, Poole P (2006) Metabolic changes of rhizobia in legume nodules. Trends Microbiol 14:161–168. doi:10.1016/j.tim.2006.02.005 PubMedCrossRefGoogle Scholar
  92. Proels RK, Huckelhoven R (2014) Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. Mol Plant Pathol 15:858–864. doi:10.1111/mpp.12139 PubMedCrossRefGoogle Scholar
  93. Qanungo KR, Shaji D, Mathur M, Banerjee AK (2004) Two RNA polymerase complexes from vesicular stomatitis virus-infected cells that carry out transcription and replication of genome RNA. Proc Natl Acad Sci U S A 101:5952–5957. doi:10.1073/pnas.0401449101 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Qian X, Ba Y, Zhuang Q, Zhong G (2014) RNA-Seq technology and its application in fish transcriptomics. OMICS 18:98–110. doi:10.1089/omi.2013.0110 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224. doi:10.1016/j.apsoil.2011.09.011 CrossRefGoogle Scholar
  96. Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A, Wincker P, Le Thiec D, Fluch S, Martin F, Duplessis S (2007) Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora larici-populina. Plant Physiol 144:347–366. doi:10.1104/pp.106.094987 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front Plant Sci 5:17. doi:10.3389/fpls.2014.00017 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Romero FM, Marina M, Pieckenstain FL (2014) The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol Lett 351:187–194. doi:10.1111/1574-6968.12377 PubMedCrossRefGoogle Scholar
  99. Romero FM, Marina M, Pieckenstain FL (2015) Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases. Res Microbiol 167:222–233. doi:10.1016/j.resmic.2015.11.001 PubMedCrossRefGoogle Scholar
  100. Roux B, Rodde N, Jardinaud MF, Timmers T, Sauviac L, Cottret L, Carrere S, Sallet E, Courcelle E, Moreau S, Debelle F, Capela D, de Carvalho-Niebel F, Gouzy J, Bruand C, Gamas P (2014) An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J 77:817–837. doi:10.1111/tpj.12442 PubMedCrossRefGoogle Scholar
  101. Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J, Lysenko A, Saqi M, Desai NM, Powers SJ, Hooper J, Ambroso L, Bharti A, Farmer A, Hammond-Kosack KE, Dietrich RA, Courbot M (2015) Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. Plant Physiol 167:1158–1185. doi:10.1104/pp.114.255927 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ryu C-M, Murphy JF, Mysore KS, Kloepper JW (2004) Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J 39:381–392. doi:10.1111/j.1365-313X.2004.02142.x PubMedCrossRefGoogle Scholar
  103. Salzman RA, Brady JA, Finlayson SA, Buchanan CD, Summer EJ, Sun F, Klein PE, Klein RR, Pratt LH, Cordonnier-Pratt MM, Mullet JE (2005) Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol 138:352–368. doi:10.1104/pp.104.058206 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Schäfer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, Scholz U, Pons-Kühnemann J, Sonnewald S, Sonnewald U, Kogel K-H (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59:461–474. doi:10.1111/j.1365-313X.2009.03887.x PubMedCrossRefGoogle Scholar
  105. Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M, Slusarenko AJ, Hoheisel JD (2002) Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J Biol Chem 277:10555–10561. doi:10.1074/jbc.M104863200 PubMedCrossRefGoogle Scholar
  106. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470PubMedCrossRefGoogle Scholar
  107. Schenkluhn L, Hohnjec N, Niehaus K, Schmitz U, Colditz F (2010) Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome. J Proteome 73:753–768. doi:10.1016/j.jprot.2009.10.009 CrossRefGoogle Scholar
  108. Scherling C, Ulrich K, Ewald D, Weckwerth W (2009) A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro–grown poplar plants revealed by metabolomics. Mol Plant-Microbe Interact 22:1032–1037. doi:10.1094/mpmi-22-8-1032 PubMedCrossRefGoogle Scholar
  109. Schuller A, Kehr J, Ludwig-Muller J (2014) Laser microdissection coupled to transcriptional profiling of Arabidopsis roots inoculated by Plasmodiophora brassicae indicates a role for brassinosteroids in clubroot formation. Plant Cell Physiol 55:392–411. doi:10.1093/pcp/pct174 PubMedCrossRefGoogle Scholar
  110. Senthil G, Liu H, Puram VG, Clark A, Stromberg A, Goodin MM (2005) Specific and common changes in Nicotiana benthamiana gene expression in response to infection by enveloped viruses. J Gen Virol 86:2615–2625. doi:10.1099/vir.0.81043-0 PubMedCrossRefGoogle Scholar
  111. Spaepen S, Bossuyt S, Engelen K, Marchal K, Vanderleyden J (2014) Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense. New Phytol 201:850–861. doi:10.1111/nph.12590 PubMedCrossRefGoogle Scholar
  112. Stearns JC, Woody OZ, McConkey BJ, Glick BR (2012) Effects of bacterial ACC deaminase on Brassica napus gene expression. Mol Plant-Microbe Interact 25:668–676. doi:10.1094/mpmi-08-11-0213 PubMedCrossRefGoogle Scholar
  113. Tam JP, Wang S, Wong KH, Tan WL (2015) Antimicrobial peptides from plants. Pharmaceuticals (Basel) 8:711–757. doi:10.3390/ph8040711 CrossRefGoogle Scholar
  114. Tanaka S, Brefort T, Neidig N, Djamei A, Kahnt J, Vermerris W, Koenig S, Feussner K, Feussner I, Kahmann R (2014) A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize. elife 3:e01355. doi:10.7554/eLife.01355 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhu T, Zou G, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15:317–330. doi:10.1105/tpc.007591 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Thilmony R, Underwood W, He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. Tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J 46:34–53. doi:10.1111/j.1365-313X.2006.02725.x PubMedCrossRefGoogle Scholar
  117. Truman W, de Zabala MT, Grant M (2006) Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance. Plant J 46:14–33. doi:10.1111/j.1365-313X.2006.02672.x PubMedCrossRefGoogle Scholar
  118. Tugizimana F, Steenkamp PA, Piater LA, Dubery IA (2014) Multi-platform metabolomic analyses of ergosterol-induced dynamic changes in Nicotiana tabacum cells. PLoS One 9:e87846. doi:10.1371/journal.pone.0087846 PubMedPubMedCentralCrossRefGoogle Scholar
  119. van de Mortel JE, de Vos RCH, Dekkers E, Pineda A, Guillod L, Bouwmeester K, van Loon JJA, Dicke M, Raaijmakers JM (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188. doi:10.1104/pp.112.207324 PubMedPubMedCentralCrossRefGoogle Scholar
  120. van de Mortel M, Recknor JC, Graham MA, Nettleton D, Dittman JD, Nelson RT, Godoy CV, Abdelnoor RV, Almeida AM, Baum TJ, Whitham SA (2007) Distinct biphasic mRNA changes in response to Asian soybean rust infection. Mol Plant-Microbe Interact 20:887–899. doi:10.1094/MPMI-20-8-0887 PubMedCrossRefGoogle Scholar
  121. Verhagen BWM, Glazebrook J, Zhu T, Chang H-S, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17:895–908. doi:10.1094/mpmi.2004.17.8.895 PubMedCrossRefGoogle Scholar
  122. Walker V, Bertrand C, Bellvert F, Moënne-Loccoz Y, Bally R, Comte G (2011) Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytol 189:494–506. doi:10.1111/j.1469-8137.2010.03484.x PubMedCrossRefGoogle Scholar
  123. Walker V, Couillerot O, Von Felten A, Bellvert F, Jansa J, Maurhofer M, Bally R, Moënne-Loccoz Y, Comte G (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356:151–163. doi:10.1007/s11104-011-0960-2 CrossRefGoogle Scholar
  124. Wan J, Torres M, Ganapathy A, Thelen J, DaGue BB, Mooney B, Xu D, Stacey G (2005) Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. Mol Plant-Microbe Interact 18:458–467. doi:10.1094/MPMI-18-0458 PubMedCrossRefGoogle Scholar
  125. Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant-Microbe Interact 18:385–396. doi:10.1094/MPMI-18-0385 PubMedCrossRefGoogle Scholar
  126. Wang Y, Tao X, Tang XM, Xiao L, Sun JL, Yan XF, Li D, Deng HY, Ma XR (2013) Comparative transcriptome analysis of tomato (Solanum lycopersicum) in response to exogenous abscisic acid. BMC Genomics 14:841. doi:10.1186/1471-2164-14-841 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. doi:10.1038/nrg2484 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Ward JL, Forcat S, Beckmann M, Bennett M, Miller SJ, Baker JM, Hawkins ND, Vermeer CP, Lu C, Lin W, Truman WM, Beale MH, Draper J, Mansfield JW, Grant M (2010) The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. Tomato. Plant J 63:443–457. doi:10.1111/j.1365-313X.2010.04254.x PubMedCrossRefGoogle Scholar
  129. Warth B, Parich A, Bueschl C, Schoefbeck D, Neumann NK, Kluger B, Schuster K, Krska R, Adam G, Lemmens M, Schuhmacher R (2015) GC-MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics 11:722–738. doi:10.1007/s11306-014-0731-1 PubMedCrossRefGoogle Scholar
  130. Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 33:271–283. doi:10.1046/j.1365-313X.2003.01625.x PubMedCrossRefGoogle Scholar
  131. Wichmann F, Asp T, Widmer F, Kolliker R (2011) Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance. Theor Appl Genet 122:567–579. doi:10.1007/s00122-010-1470-y PubMedCrossRefGoogle Scholar
  132. Wishart DS (2011) Advances in metabolite identification. Bioanalysis 3:1769–1782. doi:10.4155/bio.11.155 PubMedCrossRefGoogle Scholar
  133. Zellerhoff N, Himmelbach A, Dong W, Bieri S, Schaffrath U, Schweizer P (2010) Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses. Plant Physiol 152:2053–2066. doi:10.1104/pp.109.151829 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zhang W, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology 156:287–301. doi:10.1099/mic.0.034793-0 PubMedCrossRefGoogle Scholar
  135. Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S (2004) Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J 40:633–646. doi:10.1111/j.1365-313X.2004.02236.x PubMedCrossRefGoogle Scholar
  136. Zou J, Rodriguez-Zas S, Aldea M, Li M, Zhu J, Gonzalez DO, Vodkin LO, DeLucia E, Clough SJ (2005) Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis. Mol Plant-Microbe Interact 18:1161–1174. doi:10.1094/MPMI-18-1161 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Fernando Matías Romero
    • 1
  • María Marina
    • 1
  • Fernando Luis Pieckenstain
    • 1
  • Franco Ruben Rossi
    • 1
  • María Elisa Gonzalez
    • 1
  • Paulina Vignatti
    • 1
  • Andrés Gárriz
    • 1
  1. 1.Laboratorio de Interacciones Planta-microorganismoInstituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET)ChascomúsArgentina

Personalised recommendations