Skip to main content

Biosynthesis of Nanoparticles and Their Application in Pharmaceutical Industry

  • Chapter
  • First Online:
Metabolic Engineering for Bioactive Compounds

Abstract

Nanotechnology emerges from the different fields of science, viz. physical, chemical, biological and engineering sciences, where novel approaches are being unfolded to investigate and apply single atoms and molecules for various applications in different fields of scientific world. In this technology, nanoparticle, a minute object, functions as an entire unit in terms of its transport and characteristics. The nanosystem that involves science and engineering technology is one of the most emergent and time-demanding areas of research in nanotechnology. Currently, due to the advancement in science and technology, researchers made it possible to synthesize nanoparticles of size 100 nm, and this attempt opens and widens the scope of nanoparticle research due to its multiple applications in different fields of science and technology. The progress and the development of technology related to mankind are directly linked with the advancements and achievements of material science and processing technology. Currently the research and the progress in nanotechnology and the validation based on several specified size effects in nanomaterials describe that most of the new findings and designs of the future will be based on qualities of nanomaterials. In this field of technology, nanoparticle has massive scope for pharmaceutical industries which include health-care products and much more such as burn dressings, antimicrobial applications, medical devices and scaffolds. Several approaches have been employed for the synthesis of nanomaterials which includes chemical reduction, photochemical reactions, electrochemical techniques and green chemistry route. Among different types of nanoparticles, the metallic nanoparticles such as silver, gold, zinc, iron and metal oxide have shown considerable improvement in the field of biomedical utilization, not only because of their high surface area to volume ratio but also because they display several medicinal properties. It is in this perspective that the current review will focus on the biosynthesis of nanoparticles and their application in pharmaceutical industry and also try to overview the most recent developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul R, Amri I, Desi J, Stella M, Hanggara S (2009) Synthesis of copper oxidenanoparticles by using Phormidium cyanobacterium. Int J Chem 9:355–360

    Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res 7:17–28. doi:10.1016/j.jare.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  • Akhtar MJ, Kumar S, Alhadlaq HA, Alrokayan SA, Abu-Salah KM, Ahamed M (2016) Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicol Ind Health 32:809–821. doi:10.1177/0748233713511512

    Article  CAS  PubMed  Google Scholar 

  • Akl M, Awwad M, Nida S (2012) Green synthesis of silver nanoparticles by mulberry Leaves extract. J Nanosci Nanotechnol 2:125–128. doi:10.5923/j.nn.20120204.06

    Article  CAS  Google Scholar 

  • Alanazi FK, Radwan AA, Alsarra IA (2010) Biopharmaceutical applications of nanogold. Saudi Pharm J 18:179–193. doi:10.1016/j.jsps.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amrut SL, Satish JS, Ramchandara BP, Raghumani SN (2010) Synthesis and opticalcharacterization of copper oxide nanoparticles. Adv Appl Sci Res 1:36–40

    Google Scholar 

  • Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica Officinalis Fruit extract and their Phase Transfer and Transmetallation in an Organic Solution. J Nanosci Nanotechnol 5:1665–1671. doi:10.1166/jnn.2005.184

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of naked metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306. doi:10.1016/j.addr.2008.03.013

    Article  CAS  PubMed  Google Scholar 

  • Botha TL, Tanyn EJ, Wepener V (2015) Comparative aquatic toxicity of gold nanoparticles and ionic gold using a species sensitivity distribution approach. J Nanomater 501:986902. doi:10.1155/2015/986902

    Google Scholar 

  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 7:801–802. doi:10.1039/C39940000801

    Article  Google Scholar 

  • Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high aspect- ratio gold nanorods. Adv Mater 15:414–416. doi:10.1002/adma.200390095

    Article  CAS  Google Scholar 

  • Cai W, Chen X (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3:1840–1854. doi:10.1002/smll.20070035

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Hsu AR, Li ZB, Chen X (2007) Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett 2:265–281. doi:10.1007/s11671-007-9061-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676. doi:10.1021/nl052405t

    Article  CAS  PubMed  Google Scholar 

  • Canizal G, Ascencio JA, Gardea-Torresday J, Yacamán MJ (2001) Multiple twinned gold nanorods grown by bio-reduction techniques. J Nanopart Res 3:475–481. doi:10.1023/A:1012578821566

    Article  CAS  Google Scholar 

  • Chang SS, Shih CW, Chen CD, Lai WC, Chris Wang CR (1999) The shape transition of gold nanorods. Langmuir 15:701–709. doi:10.1021/la980929l

    Article  CAS  Google Scholar 

  • Chen YB, Bagnall DM, Koh HJ, Park KT, Hiraga K, Zhu Z, Yao T (1998) Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization. J Appl Phys 34:3912–3918. doi:10.1063/1.368595

    Article  Google Scholar 

  • Contescu CI, Putyera K (2009) Dekker encyclopedia of nanoscience and nanotechnology, vol I-VI. ISBN 13:978-0-8493-9639-7. Taylor & Francis, New York

    Google Scholar 

  • Dhrutika P, Miral P, Krishnamurthy R (2013) Silver nanoparticles biosynthesis and its antimicrobial activity. CIBtech J Bio-protocol 2:50–57

    Google Scholar 

  • Di Guglielmo C, Lopez DR, De Lapuente J, Mallafre JM, Suarez MB (2010) Embryotoxicity of cobalt ferrite and gold nanoparticles: a first in vitro approach. Reprod Toxicol 30:271–276. doi:10.1016/j.reprotox.2010.05.001

    Article  PubMed  CAS  Google Scholar 

  • Diva B, Lingappa K, Dayanand A (2012) Antibacterial activity of nano gold particles synthesized by Bacillus sps. J Ecobiotechnol 4(1):43–45

    Google Scholar 

  • Duran N, Marcato PD (2012) Biotechnological routes to metallic nanoparticles production: Mechanistics aspects, antimicrobial activity, toxicity and industrial applications. In: Rai M, Cioffi N (eds) Nano-antimicrobials: progress and prospects, vol 3. Springer, Berlin, pp 337–374

    Chapter  Google Scholar 

  • Duran N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208. doi.org/10.1166/jbn.2007.022

    Article  CAS  Google Scholar 

  • Duran N, Marcato PD, Duran M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants. Appl Microbiol Biotechnol 90:1609–1624. doi:10.1007/s00253-011-3249-8

    Article  CAS  PubMed  Google Scholar 

  • Eatemadi A, Daraee H, Zarghami N, Melat Yar H, Akbarzadeh A (2016) Nanofiber: synthesis and biomedical applications. Artif Cells Nanomed Biotechnol 44:111–121. doi:10.3109/21691401.2014

    Article  CAS  PubMed  Google Scholar 

  • Elumalai EK, Prasad TNVKV, Hemachandran J, Vivivan Therasa S, Thirumalai T, David E (2010) Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharm Sci 2:549–554

    CAS  Google Scholar 

  • Esumi K, Suzuki A, Aihara N, Usui K, Torigoe K (1998) Preparation of gold colloids with UV irradiation using dendrimers as stabilizer. Langmuir 14:3157–3159. doi:10.1021/la980162x

    Article  CAS  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171. doi:10.1038/nrc1566

    Article  CAS  PubMed  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22

    CAS  Google Scholar 

  • Fu L, Liu Z, Liu Y, Han B, Hu P, Cao L, Zhu D (2005) Beaded Cobalt oxide nanoparticles along carbon nanotubes: towards more highly integrated electronic devices. Adv Mater 17:217–221. doi:10.1002/adma.200400833

    Article  CAS  Google Scholar 

  • Garcia ME, Baker LA, Crooks RM (1999) Preparation and characterization of dendrimer-gold colloid nanocomposites. Anal Chem 71:256–258. doi:10.1021/ac980588g

    Article  CAS  PubMed  Google Scholar 

  • Geethalakshmi R, Sarada DLV (2010) Synthesis of plant-mediated silver nanoparticles using Trianthema decandra extract and evaluation of their antimicrobial activities. Int J Eng Sci Technol 2:970–975

    Google Scholar 

  • Giersig M, Mulvaney P (1993) Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9:3408–3413. doi:10.1021/la00036a014

    Article  CAS  Google Scholar 

  • Gokulakrishnan R, Ravikumar S, Raj JA (2012) In vitro antibacterial potential of metal oxide nanoparticles against antibiotic resistant bacteria pathogens. Asian Pacific J Tropical Dis 2:411–413. doi:10.1016/S2222-1808(12)60089-9

    Article  CAS  Google Scholar 

  • González-Sánchez MI, Perni S, Tommasi G, Morris NG, Hawkins K, López-Cabarcos E, Prokopovich P (2015) Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater Sci Eng A 50:332–340

    Article  CAS  Google Scholar 

  • Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti SL, Mehlhorn H, Barnard DR, Benelli G (2016) Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol Res 115:723–733

    Article  PubMed  Google Scholar 

  • Grodzinski P, Silver M, Molnar LK (2006) Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev Mol Diagn 6:307–318. doi:10.1586/14737159.6.3.307

    Article  CAS  PubMed  Google Scholar 

  • Gurrappa I, Binder L (2008) Electrodeposition of nanostructured coatings and their characterization—a review. Sci Technol Adv Mater 9(4):043001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harekrishna B, Dipak KB, Gobinda SP, Priyanka S, Sankar PD (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp A39:134–139. doi:10.1016/j.colsurfa.2009.02.008

    Google Scholar 

  • Haritha M, MeenaV SCC, Srinivasa RB (2011) Synthesis and characterization of Zinc oxide nanoparticles and its antimicrobial activity against Bacillus subtilis and Escherichia coli. Rasavan J Chem 4:217–222

    Google Scholar 

  • Hasna ASRP, Kamaraj M, Jagadeeswaran P, Sangeetha G, Rajeshwari S (2012) Plants: Green route for nanoparticles Synthesis. Int Res J Biol Sci 1:85–90

    Google Scholar 

  • Haverkamp RG, Marshall AT, Agterveld DV (2007) Pick your carats: Nanoparticles of gold- silver – copper alloy produced In-vivo. J Nanopart Res 9:697–700. doi:10.1007/s11051-006-9198-y

    Article  CAS  Google Scholar 

  • Hemanth NKS, Kumar G, Karthik L, Bhaskara RKV (2010) Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res 2:161–167

    Google Scholar 

  • Hiramatsu H, Osterloh FE (2004) A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 16:2509–2511. doi:10.1021/cm049532v

    Article  CAS  Google Scholar 

  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2:681–693. doi:10.2217/17435889.2.5.681

    Article  CAS  Google Scholar 

  • Hussain S, Ferguson C (2006) Best evidence topic report. Silver sulfadiazine cream in burns. Emerg Med J 23:929–932. doi:10.1136/emj.2006.043059

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain P, Aggarwal V (2012) Synthesis, characterization and antimicrobial effects of silver nanoparticles from microorganism. Int J Nano Mater Sci 1:108–120

    Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001a) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393. doi:10.1002/1521-4095(200109)13:18<1389

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001b) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067. doi:10.1021/jp0107964

    Article  CAS  Google Scholar 

  • Jana NR, Gearheart L, Obare SO, Murphy CJ (2002) Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir 18:922–927. doi:10.1021/la0114530

    Article  CAS  Google Scholar 

  • Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z (2014) Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 35(22):5814–5821

    Article  CAS  PubMed  Google Scholar 

  • Kapilashrami M, Zhang Y, Liu YS, Hagfeldt A, Guo J (2014) Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem Rev 114:9662–6707

    Article  CAS  PubMed  Google Scholar 

  • Kaviya S, Santhanalakshmi J, Viswanathan B (2011) Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-Sorbitol. J Nanotechnol 1–5

    Google Scholar 

  • Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quantitat Spectroscop Radiat Transf 111:1–35. doi:10.1016/j.jqsrt.2009.07.012

    Article  CAS  Google Scholar 

  • Kim YG, Oh SK, Crooks RM (2004) Preparation and characterization of 1–2 nm dendrimer-encapsulated gold nanoparticles having very narrow size distributions. Chem Mater 16:167–172. doi:10.1021/cm034932o

    Article  CAS  Google Scholar 

  • Kim F, Song JH, Yang P (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317. doi:10.1021/ja028110o

    Article  CAS  PubMed  Google Scholar 

  • Klasen HJ (2000) Historical review of the use of silver in the treatment of burns II. Renewed interest for silver. Burns 26:131–138. doi:10.1016/S0305-4179(99)00116-3

    Article  CAS  PubMed  Google Scholar 

  • Lamb AE, Anderson CWN, Haverkamp RG (2001) The extraction of gold from plants and its application to phytomining. Chem N Z 65:31–33

    CAS  Google Scholar 

  • Leaper DJ (2006) Silver dressing: the role in wound management. Int Wound J 3:282–294. doi:10.1111/j.1742-481X.2006.00265

    Article  PubMed  Google Scholar 

  • Leff DV, Brandt L, Heath JR (1996) Synthesis and characterization of hydrophobic, organically soluble gold nanocrystals functionalized with primary amines. Langmuir 12:4723–4730. doi:10.1021/la960445u

    Article  CAS  Google Scholar 

  • Lekshmi NCJP, Sumi SB, Viveka S, Jeeva S, Brindha JR (2012) Antibacterial activity of nanoparticles from Allium sp. J Microbiol and Biotechnol Res 2:115–119

    Google Scholar 

  • Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47–52. doi:10.1038/nnano.2006.170

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Byrne JM, Coker VS (2011) Biotechnological synthesis of functional nanomaterials. Curr Opin Biotechnol 22:509–515. doi:10.1016/j.copbio.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  • Manna A, Imae T, Aoi K, Okada M, Yogo T (2001) Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles. Chem Mater 13:1674–1681. doi:10.1021/cm000416b

    Article  CAS  Google Scholar 

  • Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1996. doi:10.1126/science.266.5193.1961

    Article  CAS  PubMed  Google Scholar 

  • Mieszawska AJ, Zamborini FP (2005) Gold nanorods grown directly on surfaces from microscale patterns of gold seeds. Chem Mater 17:3415–3420. doi:10.1021/cm050072v

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: Technological concepts and future applications. J Nano Res 3:507–517. doi: 1007/s11051-007-9275-x

    Article  CAS  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed Nanotechnol Biol Med 5:452–456. doi:10.1016/j.nano.2009.01.012

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13. doi:10.1016/j.cis.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 169:59–79. doi:10.1016/j.cis.2011.08.004

    Article  CAS  PubMed  Google Scholar 

  • Nasrollahi A, Paurshamsian KH, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dim 1:233–239. doi:10.7508/ijnd.2010.03.007

    CAS  Google Scholar 

  • Nelson D, Priscyla DM, Oswaldo LA, Gabriel IHDS, Elisa E (2005) Mechanical aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnology 3:8. doi:10.1186/1477-3155-3-8

    Article  Google Scholar 

  • Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticles using Pleurotus Sajorcaju and its antimicrobial activity. Dig J Nanomater Biostruct 4:623–629

    Google Scholar 

  • Oza V, Pandey S, Shah V, Sharon M (2012) Extracellular fabrication of silver nanoparticles using Pseudomonas aeruginosa and its antimicrobial assay. Pelagia Res Lib. Adv Appl Sci Res 3:1778–1783

    Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2016) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9:035004. doi:10.1088/1468-6996/9/3/035004

    Article  CAS  Google Scholar 

  • Park JW, Benz CC, Martin FJ (2004) Future directions of liposome and immunoliposome-based cancer therapeutics. Semin Oncol 31:196–205. doi:10.1053/j.seminoncol.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathi M et al (2009) Synthesis and characterization of titanium dioxide nanoparticles and their applications to textiles for microbe resistance. J Textile Apparel Technol Manage 6:1–8

    Google Scholar 

  • Parveen A, Ashish SR, Srinath R (2012) Biosynthesis and characterization of silver nanoparticles from Cassia auriculata leaf extract and in-vitro evaluation of antimicrobial activity. Int J Appl Biol Pharma Technol 3:222–228

    CAS  Google Scholar 

  • Prashanth S, Menaka I, Muthezhilan R, Navin KS (2011) Synthesis of plant mediated silver nanoparticles using medical plant extract and evaluation of its antimicrobial activities. Int J Eng Sci Technol 3:6235–6250. doi.org/10.1155/2011/573429

    Google Scholar 

  • Prasson PS, Chittaranjan B (2012) Green synthesis of gold nanoparticles and silver nanoparticles from leaves and bark of Ficus carica for nanotechnology application. IJSRP 2:1–4

    Google Scholar 

  • Ravindra BM, Seema LN, Neelambika TM, Gangadhar SM, Nataraja K, Vijaya KS (2012) Silver nanoparticles synthesized by in-vitro derived plants and Callus culture of Clitoria ternatea; evaluation of antimicrobial activity. Res Biotechnol 3:26–38

    Google Scholar 

  • Reetz MT, Helbig W (1994) Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116:7401–7402. doi:10.1021/ja00095a051

    Article  CAS  Google Scholar 

  • Rodriguez-Carmona E, Villaverde A (2010) Nanostructured bacterial materials for innovative medicines. Trends Microbiol 18:423–430. doi:10.1016/j.tim.2010.06.007

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Chattopadhyay D, Acharya K (2011) Preparation of silver nanoparticles by bioproduction using Nigrospora oryzae culture filtrate and its antimicrobial activity. Digest J Nano Mater Biostruct 6:1519–1528

    Google Scholar 

  • Sahayaraj K, Rajesh S (2011) Bionanoparticles: synthesis and antimicrobial applications, science against microbial pathogens: communicating current research and technological advances. In: Méndez-Vilas A (ed). FORMATEX, pp 228–44

    Google Scholar 

  • Salam HA, Rajiv P, Kamaraj M, Jagadeeswaran P, Gunalan S, Sivaraj R (2012) Plant: Green route for nanoparticles synthesis. Inter. Res J Biol Sci 1:85–90

    Google Scholar 

  • Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704. doi:10.1021/jp0469665

    Article  CAS  PubMed  Google Scholar 

  • Shahverdi M, Kesharwani J, Ingle A (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol 5:382–386. doi:10.1016/j.nano.2009.06.005

    Article  CAS  Google Scholar 

  • Shi X, Ganser TR, Sun K, Balogh LP, Baker JR (2006) Characterization of crystalline dendrimer-stabilized gold nanoparticles. Nanotechnology 17:1072–1078. doi:10.1088/0957-4484/17/4/038

    Article  CAS  Google Scholar 

  • Shi X, Lee I, Baker JR (2008) Acetylation of dendrimer-entrapped gold and silver nanoparticles. J Mater Chem 18:586–593. doi:10.1039/B714133E

    Article  CAS  Google Scholar 

  • Shiekh FA, Farooq O, Mian SH, Bautista RL, Arja SB, Andrabi KI (2016) The pitfalls of growing nanomaterials. Nanomedicine (Lond) 11:1635–1638. doi:10.2217/nnm-2016-0043

    Article  CAS  Google Scholar 

  • Shloma M, Grouchko M, Kamyshny A (2010) Copper nanoparticles for printed electronics: Routes towards achieving oxidation stability. Materials 3:4626–4638. doi:10.3390/ma3094626

    Article  CAS  Google Scholar 

  • Sibbald RG, Contreras-Ruiz J, Coutts P, Fierheller M, Rothman A, Woo K (2007) Bacteriology, inflammation, and healing: a study of nanocrystalline silver dressings in chronic venous leg ulcers. Adv Skin Wound Care 20:549–458. doi:10.1097/01.ASW.0000294757.05049.85

    Article  PubMed  Google Scholar 

  • Silpa S (2016) Nanotechnology-present revolutionary biotechnology. Int J Pharma Res Health Sci 4:1261–1267

    Article  CAS  Google Scholar 

  • Soheyla H, Hamed B, Eshrat GF, Farzaneh N (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmami. Dig J Nanomater Biostruct 7:7999–1005

    Google Scholar 

  • Sondi I, Sondi B (2004) Silver nanoparticles as antimicrobial agent: A case study on E coli as a model for gram negative bacteria. J Colloid Interface Sci 275:175–182. doi:10.1016/j.jcis.2004.02.012

    Google Scholar 

  • Sridhara V, Ali B, Shaziya K, Satapathy LN, Khandelwal P (2012) Biosynthesis and antibacterial activity of silver nanoparticles. Res. J Biotechnol 8:11–17. doi: 10.1016/j.nano.2011.05.007

    Google Scholar 

  • Stoimenov PK, KRL MGL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686. doi:10.1021/la0202374

    Article  CAS  Google Scholar 

  • Sundrarajan M, Gowri S (2011) Green synthesis of titanium dioxide nanoparticles nyctanthes arbor- tristis leave extracts. Chalcogenide Lett 8(8):447–451. doi:10.1016/S1995-7645(14)60171-1

    CAS  Google Scholar 

  • Thorek DL, Chen AK, Czupryna J, ANDREW T (2006) Super-paramagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38. doi:10.1007/s10439-005-9002-7

    Article  PubMed  Google Scholar 

  • Tikariha S, Singh S, Banerjee S, Vidyarthi AS (2012) Biosynthesis of gold nanoparticles, Scope and application: A review. Int J Pharm Sci Res 3:1603–1615

    CAS  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) The study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. doi:10.1039/DF9511100055

    Article  Google Scholar 

  • van der Zande BMI, Boehmer MR, Fokkink LGJ, Schönenberger C (1997) Aqueous gold sols and rod-shaped particles. J Phys Chem B 101:852–854. doi:10.1021/jp963348i

    Article  Google Scholar 

  • Weare WW, Reed SM, Warner MG, Hutchison JE (2000) Improved synthesis of small (dCORE ≈1.5 nm) phosphine-stabilized gold nanoparticles. J Am Chem Soc 122:12890–13901. doi:10.1021/ja002673n

    Article  CAS  Google Scholar 

  • Wong EH, Lam SJ, Nam E, Qiao GG (2014) Biocompatible single-chain polymeric nanoparticles via organo-catalyzed ring-opening polymerization. ACS Macro Lett 3:524–528

    Article  CAS  Google Scholar 

  • Yogeswari R, Sikha B, Akshya KO, Nayak PC (2012) Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. J Microbiol Antimicrobial 4:103–109. doi:10.5897/JMA11.060

    Article  CAS  Google Scholar 

  • Yohan D, Chithrani BD (2014) Applications of nanoparticles in nanomedicine. J Biomed Nanotechnol 10:2371–2392. doi:10.1166/jbn.2014.2015

    Article  CAS  PubMed  Google Scholar 

  • Yu YY, Chang SS, Lee CL, Chris Wang CR (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664. doi:10.1021/jp971656q

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiaz Ul Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Malik, B., Pirzadah, T.B., Kumar, M., Rehman, R.U. (2017). Biosynthesis of Nanoparticles and Their Application in Pharmaceutical Industry. In: Kalia, V., Saini, A. (eds) Metabolic Engineering for Bioactive Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-10-5511-9_16

Download citation

Publish with us

Policies and ethics