Skip to main content

Role of Nanotechnology in Skin Remedies

  • Chapter
  • First Online:
Photocarcinogenesis & Photoprotection

Abstract

Cosmeceutical-based industries are the fast-growing field, and nanotechnology played an important role in cosmeceutical growth. Nanotechnology-based cosmeceuticals have more advantages over traditional products. Nanotechnology offers different varieties of products with enhanced bioavailability of active component which increase visual look of cosmeceutical products for a longer period of time. Its application covers a wide range of cosmeceutical products ranging from photoaging, hyperpigmentation, wrinkles, hair, etc. However, augmented demands of nanotechnology in cosmetic industry have prominent apprehension regarding the plausible diffusion of nanoparticles in the dipper skin, thus possible side effects to the human skin. Herein, a brief overview of the various novel nanocarriers for cosmeceuticals like liposomes, nanoemulsions, dendrimers, solid lipid nanoparticles (SLNs), inorganic nanoparticles, nanocrystals, etc., nanoparticle-based cosmeceutical products existing in the marketplace, possible health hazards caused by nanoparticles on exposure of nano-based cosmetics, and the recent regulatory rules applied to avoid the nanotoxicity are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. U.S. Food and Drug Administration. Is it a cosmetic, a drug, or both? (Or is it soap?). Available from: http://www.fda.gov/cosmetics/guidancecomplianceregulatoryinformation/ucm074201.htm. Last accessed on 1 Aug 2015

  2. Fulekar MH (2010) Nanotechnology: importance and application. IK International Publishing House, India

    Google Scholar 

  3. Mukta S, Adam F (2010) Cosmeceuticals in day-to-day clinical practice. J Drugs Dermatol 9:62–66

    Google Scholar 

  4. Brandt FS, Cazzaniga A, Hann M (2011) Cosmeceuticals: current trends and market analysis. Semin Cutan Med Surg 30:141–143

    Article  CAS  PubMed  Google Scholar 

  5. Duarah S, Pujari K, Devidurai R, Narayanan VH (2016) Nanotechnology-based cosmeceuticals: a review. Int J App Pharm 8:8–12

    CAS  Google Scholar 

  6. Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. ISRN Dermatol 2014:1–14

    Article  CAS  Google Scholar 

  7. Singh R, Tiwari S, Tawaniya J (2013) Review on nanotechnology with several aspects. Int J Res Comp Eng Electron 2:1–8

    Google Scholar 

  8. Mu L, Sprando RL (2010) Application of nanotechnology in cosmetics. Pharm Res 27:1746–1749

    Article  CAS  PubMed  Google Scholar 

  9. Padamwar MN, Pokharkar VB (2006) Development of vitamin loaded topical liposomal formulation using factorial design approach: drug deposition and stability. Int J Pharm 320:37–44

    Article  CAS  PubMed  Google Scholar 

  10. BBC Research (2007) Nanostructured materials for the biomedical. Pharmaceutical, and cosmetic markets

    Google Scholar 

  11. Papakostas D, Rancan F, Sterry W, Blume-Peytavi U, Vogt A (2011) Nanoparticles in dermatology. Arch Dermatol Res 303:533–550

    Article  CAS  PubMed  Google Scholar 

  12. Patidar A, Thakur DS, Kumar P, Verma J (2010) A review on novel lipid-based nanocarriers. Int J Pharm Pharm Sci 2:30–35

    CAS  Google Scholar 

  13. Bernardi DS, Pereira TA, Maciel NR et al (2011) Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. J Nanobiotechnol 9:44

    Article  CAS  Google Scholar 

  14. Nemitz MC, Moraes RC, Koester LS, Bassani VL, Von Poser GL, Teixeira HF (2015) Bioactive soy isoflavones: extraction and purification procedures, potential dermal use and nanotechnology-based delivery systems. Phytochem Rev 14:849–869

    Article  CAS  Google Scholar 

  15. Schwarz JC, Baisaeng N, Hoppel M, Löw M, Keck CM, Valenta C (2013) Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int J Pharm 447:213–217

    Article  CAS  PubMed  Google Scholar 

  16. Patravale VB, Mandawgade SD (2008) Novel cosmetic delivery systems: an application update. Int J Cosmet Sci 30:19–33

    Article  CAS  PubMed  Google Scholar 

  17. Calligaris S, Comuzzo P, Bot F et al (2015) Nanoemulsions as delivery systems of hydrophobic silybin from silymarin extract: effect of oil type on silybin solubility, in vitro bioaccessibility and stability. LWT Food Sci Technol 63:77–84

    Article  CAS  Google Scholar 

  18. Cerqueira-Coutinho C, Santos-Oliveira R, dos Santos E, Mansur CR (2015) Development of a photoprotective and antioxidant nanoemulsion containing chitosan as an agent for improving skin retention. Eng Life Sci 15:593–604

    Article  CAS  Google Scholar 

  19. Goncalves VSS, Rodriguez-Rojo S, De Paz E, Mato C, Martin A, Cocero MJ (2015) Production of water soluble quercetin formulations by pressurized ethyl acetate-in-water emulsion technique using natural origin surfactants. Food Hydrocoll 51:295–304

    Article  CAS  Google Scholar 

  20. Ha TVA, Kim S, Choi Y et al (2015) Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food Chem 178:115–121

    Article  CAS  PubMed  Google Scholar 

  21. Hategekimana J, Chamba MVM, Shoemaker CF, Majeed H, Zhong F (2015) Vitamin E nanoemulsions by emulsion phase inversion: effect of environmental stress and long-term storage on stability and degradation in different carrier oil types. Colloid Surf A 483:70–80

    Article  CAS  Google Scholar 

  22. Hategekirnana J, Masamba KG, Ma JG, Zhong F (2015) Encapsulation of vitamin E: effect of physicochemical properties of wall material on retention and stability. Carbohydr Polym 124:172–179

    Article  CAS  Google Scholar 

  23. Lu LY, Liu Y, Zhang ZF, Gou XJ, Jiang JH, Zhang JZ, Yao Q (2015) Pomegranate seed oil exerts synergistic effects with trans-resveratrol in a self-nanoemulsifying drug delivery system. Biol Pharm Bull 38:1658–1662

    Article  CAS  PubMed  Google Scholar 

  24. Sigward E, Corvis Y, Doan BT, Kindsiko K, Seguin J, Scherman D, Brossard D, Mignet N, Espeau P, Crauste-Manciet S (2015) Preparation and evaluation of multiple nanoemulsions containing gadolinium (III) chelate as a potential magnetic resonance imaging (MRI) contrast agent. Pharm Res 32:2983–2994

    Article  CAS  PubMed  Google Scholar 

  25. Walker RM, Decker EA, McClements DJ (2015) Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: effect of surfactant concentration and particle size. J Food Eng 164:10–20

    Article  CAS  Google Scholar 

  26. Zhang J, Bing L, Reineccius GA (2015) Formation, optical property and stability of orange oil nanoemulsions stabilized by Quallija saponins. LWT Food Sci Technol 64:1063–1070

    Article  CAS  Google Scholar 

  27. McClements DJ (2012) Advances in fabrication of emulsions with enhanced functionality using structural design principles. Curr Opin Colloid Interf Sci 17:235–245

    Article  CAS  Google Scholar 

  28. Schwarz JC, Klang V, Karall S, Mahrhauser D, Resch GP, Valenta C (2012) Optimisation of multiple W/O/W nanoemulsions for dermal delivery of aciclovir. Int J Pharm 435:69–75

    Article  CAS  PubMed  Google Scholar 

  29. Bidone J, Argenta DF, Kratz J, Pettenuzzo LF, Horn AP, Koester LS, Bassani VL, Simões CM, Teixeira HF (2015) Antiherpes activity and skin/mucosa distribution of flavonoids from achyrocline satureioides extract incorporated into topical nanoemulsions. Biomed Res Int 2015:238010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fasolo D, Bassani VL, Teixeira HF (2009) Development of topical nanoemulsions containing quercetin and 3-O-methylquercetin. Pharmazie 64:726–730

    CAS  PubMed  Google Scholar 

  31. Fasolo D, Schwingel L, Holzschuh M, Bassani V, Teixeira H (2007) Validation of an isocratic LC method for determination of quercetin and methylquercetin in topical nanoemulsions. J Pharm Biomed Anal 44:1174–1177

    Article  CAS  PubMed  Google Scholar 

  32. Zorzi GK, Caregnato F, Moreira JC, Teixeira HF, Carvalho EL (2016) Antioxidant effect of nanoemulsions containing extract of achyrocline satureioides (Lam) D.C.-Asteraceae. AAPS PharmSciTech 17:844

    Article  CAS  PubMed  Google Scholar 

  33. Brownlow B, Nagaraj VJ, Nayel A, Joshi M, Elbayoumi T (2015) Development and in vitro evaluation of vitamin E-enriched nanoemulsion vehicles loaded with genistein for chemoprevention against UVB-induced skin damage. J Pharm Sci 104:3510–3523

    Article  CAS  PubMed  Google Scholar 

  34. Clares B, Calpena AC, Parra A, Abrego G, Alvarado H, Fangueiro JF, Souto EB (2014) Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: effect on skin permeation. Int J Pharm 473:591–598

    Article  CAS  PubMed  Google Scholar 

  35. Kohl E, Steinbauer J, Landthaler M, Szeimies RM (2011) Skin ageing. J Eur Acad Dermatol Venereol 25:873–884

    Article  CAS  PubMed  Google Scholar 

  36. Kaur IP, Agrawal R (2007) Nanotechnology: a new paradigm in cosmeceuticals. Recent Pat Drug Deliv Formul 1:171–182

    Article  CAS  PubMed  Google Scholar 

  37. Aparajita V (2014) Liposomes as carriers in skin ageing. Int J Curr Pharm Res 6:1–7

    CAS  Google Scholar 

  38. Lasic DD (1998) Novel applications of liposomes. Trends Biotechnol 16:307–321

    Article  CAS  PubMed  Google Scholar 

  39. Chen Y, Wu Q, Zhang Z, Yuan L, Liu X, Zhou L (2012) Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules 17:5972–5987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kazi KM (2010) Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res 1:374–380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bei D, Meng J, Youan BBC (2010) Engineering nanomedicines for improved melanoma therapy: progress and promises. Nanomedicine 5:1385–1399

    Article  CAS  PubMed  Google Scholar 

  42. Anisha S, Kumar SP, Kumar GV, Garima G (2010) Approaches used for penetration enhancement in transdermal drug delivery system. Int J Pharm Sci 2:708–716

    Google Scholar 

  43. Sankhyan A, Pawar P Recent trends in niosome as vesicular drug delivery system. J Appl Pharm Sci 2:20–32

    Google Scholar 

  44. Tavano L, Muzzalupo R, Picci N, de Cindio B (2014) Co-encapsulation of lipophilic antioxidants into niosomal carriers: percutaneous permeation studies for cosmeceutical applications. Colloids Surf B: Biointerfaces 114:144–149

    Article  CAS  PubMed  Google Scholar 

  45. L’Oréal (1989) Cosmetic and pharmaceutical compositions containing niosomes and a water-soluble polyamide, and a process for preparing these compositions

    Google Scholar 

  46. Friedrich RB, Kann B, Coradini K, Offerhaus HL, Beck RC, Windbergs M (2015a) Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin. Eur J Pharm Sci 78:204–213

    Article  CAS  PubMed  Google Scholar 

  47. Calderilla-Fajardo SB, Cázares-Delgadillo J, Villalobos-Garcia R, Quintanar-Guerrero D, Ganem-Quintanar A, Robles R (2006) Influence of sucrose esters on the in vivo percutaneous penetration of octyl methoxycinnamate formulated in nanocapsules, nanoemulsion, and emulsion. Drug Dev Ind Pharm 32:107–113

    Article  CAS  PubMed  Google Scholar 

  48. Olvera-Martínez BI, Cázares-Delgadillo J, Calderilla-Fajardo SB, Villalobos-Garcia R, Ganem-Quintanar A, Quintanar-Guerrero D (2005) Preparation of polymeric nanocapsules containing octyl methoxycinnamate by the emulsification-diffusion technique: penetration across the stratum corneum. J Pharm Sci 94:1552–1559

    Article  PubMed  CAS  Google Scholar 

  49. Weiss-Angeli V, Poletto FS, de Marco SL, Salvador M, da Silveira NP, Guterres SS, Pohlmann AR (2012) Sustained antioxidant activity of quercetin-loaded lipid-core nanocapsules. J Nanosci Nanotechnol 12:2874–2880

    Article  CAS  PubMed  Google Scholar 

  50. Kothamasu P, Kanumur H, Ravur N, Maddu C, Parasuramrajam R, Thangavel S (2012) Nanocapsules: the weapons for novel drug delivery systems. Bioimpacts 2:71–81

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Poletto FS, Beck RCR, Guterres SS, Pohlmann AR (2011) Polymeric nanocapsule: concepts and applications. In: Beck R, Guterres S, Pohlmann A (eds) Nanocosmetics and nanomedicines: new approaches for skin care. Springer, Berlin, pp 47–51

    Google Scholar 

  52. Guterres SS, Alves MP, Pohlmann AR (2007) Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2:147–157

    Article  PubMed  PubMed Central  Google Scholar 

  53. Detoni CB, Souto GD, da Silva AL, Pohlmann AR, Guterres SS (2012) Photostability and skin penetration of different E-resveratrol-loaded supramolecular structures. Photochem Photobiol 88:913–921

    Article  CAS  PubMed  Google Scholar 

  54. Contri RV, Katzer T, Ourique AF, da Silva AL, Beck RC, Pohlmann AR, Guterres SS (2014a) Combined effect of polymeric nanocapsules and chitosan hydrogel on the increase of capsaicinoids adhesion to the skin surface. J Biomed Nanotechnol 10:820–830

    Article  CAS  PubMed  Google Scholar 

  55. Contri RV, Kaiser M, Poletto FS, Pohlmann AR, Guterres SS (2011) Simultaneous control of capsaicinoids release from polymeric nanocapsules. J Nanosci Nanotechnol 11:2398–2406

    Article  CAS  PubMed  Google Scholar 

  56. Contri RV, Soares RM, Pohlmann AR, Guterres SS (2014b) Structural analysis of chitosan hydrogels containing polymeric nanocapsules. Mater Sci Eng C Mater Biol Appl 42:234–242

    Article  CAS  PubMed  Google Scholar 

  57. Puri D, Bhandari A, Sharma P, Choudhary D (2010) Lipid nanoparticles (SLN, NLC): a novel approach for cosmetic and dermal pharmaceutical. J Global Pharma Technol 2:1–15

    CAS  Google Scholar 

  58. Ekambaram P, Sathali AAH, Priyanka H (2012) Solid lipid nanoparticles: a review. Sci Rev Chem Commun 2:80–102

    CAS  Google Scholar 

  59. Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–184

    Article  CAS  PubMed  Google Scholar 

  60. Mei Z, Wu Q, Hu S, Li X, Yang X (2005) Triptolide loaded solid lipid nanoparticle hydrogel for topical application. Drug Dev Ind Pharm 31:161–168

    Article  CAS  PubMed  Google Scholar 

  61. Jenning V, Gysler A, Schafer-Korting M, Gohla SH (2000a) Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm 49:211–218

    Article  CAS  PubMed  Google Scholar 

  62. Jenning V, Schäfer-Korting M, Gohla S (2000b) Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release 66:115–126

    Article  CAS  PubMed  Google Scholar 

  63. Souto EB, Muller RH (2008) Cosmetic features and applications of lipid nanoparticles (SLN, NLC). Int J Cosmet Sci 30:157–165

    Article  CAS  PubMed  Google Scholar 

  64. Wissing SA, Mader K, Müller RH (2000) Solid lipid nanoparticles (SLN) as a novel carrier system offering prolonged release of the perfume Allure (Chanel). In: Proceedings of the international symposium on controlled release of bioactive materials, vol 27, pp 311–312

    Google Scholar 

  65. Scalia S, Franceschinis E, Bertelli D, Iannuccelli V (2013) Comparative evaluation of the effect of permeation enhancers, lipid nanoparticles and colloidal silica on in vivo human skin penetration of quercetin. Skin Pharmacol Physiol 26:57–67

    Article  CAS  PubMed  Google Scholar 

  66. Scalia S, Mezzena M (2010) Photostabilization effect of quercetin on the UV filter combination, butyl methoxydibenzoylmethane-octyl methoxycinnamate. Photochem Photobiol 86:273–278

    Article  CAS  PubMed  Google Scholar 

  67. Puglia C, Offerta A, Tirendi GG, Tarico MS, Curreri S, Bonina F, Perrotta RE (2016) Design of solid lipid nanoparticles for caffeine topical administration. Drug Deliv 23:36–40

    Article  CAS  PubMed  Google Scholar 

  68. Mitri K, Shegokar R, Gohla S, Anselmi C, Müller RH (2011) Lipid nanocarriers for dermal delivery of lutein: preparation, characterization, stability and performance. Int J Pharm 414:267–275

    Article  CAS  PubMed  Google Scholar 

  69. Caddeo C, Teskac K, Sinico C, Kristl J (2008) Effect of resveratrol incorporated in liposomes on proliferation and UV-B protection of cells. Int J Pharm 363:183–191

    Article  CAS  PubMed  Google Scholar 

  70. Teskac K, Kristl J (2010) The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int J Pharm 390:61–69

    Article  CAS  PubMed  Google Scholar 

  71. Müller RH, Petersen RD, Hommoss A, Pardeike J (2007) Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 59:522–530

    Article  PubMed  CAS  Google Scholar 

  72. Keck CM, Müller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur J Pharm Biopharm 62:3–16

    Article  CAS  PubMed  Google Scholar 

  73. Petersen R (2008) Nanocrystals for use in topical cosmetic formulations and method of production thereof. Abbott GmbH & Co., US Patent 60/866233

    Google Scholar 

  74. http://www.essentialdayspa.com/forum/viewthread.php?tid=26729. Last accessed Jan 2012

  75. Bansal S, Bansal M, Kumria R (2012) Nanocrystals: current strategies and trends. Int J Res Pharmaceut Biomed Sci 3:406–419

    Google Scholar 

  76. Dendrimers & dendrons: facets of pharmaceutical nanotechnology. Drug-Dev Newsletter. http://www.kellerfoundation.com/ME2/dirmod.asp?sid=4306B1E9C3CC4E07A4D64E23FBDB232C&nm=Back+Issues&type=Publishing&mod=Publications%3A%3AArticle&mid=8F3A7027421841978F18BE895F8-7F791&tier=4&id=9B9BA1DAA5BE455A85A81D97382FE885

  77. Tournihac F, Simon P (2001) Cosmetic or dermatological topical compositions comprising dendritic polyesters. U.S. Patent 6,287,552

    Google Scholar 

  78. Furukawa H, Limura T (2012) Copolymer having carbosiloxane dendrimer structure, and composition and cosmetic containing the same. U.S. Patent 20120263662A1

    Google Scholar 

  79. Hyde S, Andersson A, Larsson K (1997) The language of shape, 1st edn. Elsevier, New York

    Google Scholar 

  80. Kimmes SC, Feltin C (2013) Cosmetic composition comprising an oil and a polymer both bearing a hydrogen-bond-generating joining group, and cosmetic treatment process. European Patent 2575751A1

    Google Scholar 

  81. Ribier A, Biatry B (2002) Cosmetic or dermatologic oil/water dispersion stabilized with cubic gel particles and method of preparation. European Patent 0711540B1

    Google Scholar 

  82. Albrecht H, Schreiber J (2002) Hair care products with disperse liquid crystals exhibiting the cubic phases. W.O. Patent 2002041850A1

    Google Scholar 

  83. Simonnet JT, Sonneville O, Legret S (2001) Nanoemulsion based on phosphoric acid fatty acid esters and its uses in the cosmetics, dermatological, pharmaceutical, and/or ophthalmological fields. U.S. Patent 6274150 B1

    Google Scholar 

  84. Lens M (2009) Use of fullerenes in cosmetics. Recent Pat Biotechnol 3:118–123

    Article  CAS  PubMed  Google Scholar 

  85. Ito S, Itoga K, Yamato M, Akamatsu H, Okano T (2010a) The co-application effects of fullerene and ascorbic acid on UV-B irradiated mouse skin. Toxicology 267:27–38

    Article  CAS  PubMed  Google Scholar 

  86. Ito Y, Warner JH, Brown R, Zaka M, Pfeiffer R, Aono T, Izumi N, Okimoto H, Morton JJ, Ardavan A, Shinohara H, Kuzmany H, Peterlik H, Briggs GA (2010b) Controlling intermolecular spin interactions of La@C(82) in empty fullerene matrices. Phys Chem Chem Phys 12:1618–1623

    Article  CAS  PubMed  Google Scholar 

  87. Cusan C, Da Ros T, Spalluto G, Foley S, Janot J-M, Seta P, Larroque C, Tomasini MC, Antonelli T, Ferraro L, Prato M (2002) A new multi-charged C60 derivative: synthesis and biological properties. Eur J Org Chem 17:2928–2934

    Article  Google Scholar 

  88. Popov AP, Lademann J, Priezzhev AV, Myllyla R (2005) Effect of size of TiO2 nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin. J Biomed Opt 10:1–9

    Article  CAS  Google Scholar 

  89. Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P (2007) Human skin penetration of sunscreen nanoparticles: in vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20:148–154

    Article  CAS  PubMed  Google Scholar 

  90. Dransfield GP (2000) Inorganic sunscreens. Radiat Prot Dosim 91:271–273

    Article  CAS  Google Scholar 

  91. Murphy GM (1999) Sunblocks: mechanisms of action. Photodermatol Photoimmunol Photomed 15:34–36

    Article  CAS  PubMed  Google Scholar 

  92. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yah CS, Simate G, Iyuke SE (2012) Nanoparticles toxicity and their routes of exposures. Pak J Pharm Sci 25:477–491

    CAS  PubMed  Google Scholar 

  94. Kreyling WG, Semmler-Behnke M, Moller W (2006) Ultrafine particle-lung interactions: does size matter? J Aerosol Med 19:74–83

    Article  CAS  PubMed  Google Scholar 

  95. Zhu MT, Feng WY, Wang Y, Wang B, Wang M, Ouyang H, Zhao YL, Chai ZF (2009) Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107:342–351

    Article  CAS  PubMed  Google Scholar 

  96. Wang B, Feng WY, Wang M, Wang TC, Gu YQ, Zhu MT (2008) Acute toxicological impact of nano-and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276

    Article  CAS  Google Scholar 

  97. Paul JAB, Roel PFS (2006) Toxicological characterization of engineered nanoparticles. In: Gupta RB, Kompella UB (eds) Nanoparticle technology for drug delivery. Taylor and Francis, New York, pp 161–170

    Google Scholar 

  98. Benson HAE (2005) Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv 2:23–33

    Article  CAS  PubMed  Google Scholar 

  99. Buzea C, Pacheco II, Robble K (2007) Nanomaterial and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    Article  PubMed  Google Scholar 

  100. Cevc G, Vierl U (2010) Nanotechnology and the transdermal route. A state of the art review and critical appraisal. J Control Release 141:277–299

    Article  CAS  PubMed  Google Scholar 

  101. Toll R, Jacobi U, Richter H, Lademann J, Schaefer H, Blume-Peytavi U (2004) Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol 123:168–176

    Article  CAS  PubMed  Google Scholar 

  102. Takeda K, Suzuki K-I, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, Oshio S, Nihei Y, Ihara T, Sugamata M (2009) Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci 55:95–102 2009

    Article  CAS  Google Scholar 

  103. Jong WHD, De H, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149

    Article  PubMed  PubMed Central  Google Scholar 

  104. Poon VKM, Burd A (2004) In vitro cytotoxity of silver: implication for clinical wound care. Burns 30:140–147

    Article  PubMed  Google Scholar 

  105. U.S. Food and Drug Administration, Import Alert 66–38. http://www.accessdata.fda.gov/cmsia/importalert 188.html

  106. Nanomaterials and the EU Cosmetics Regulation: Implications for Your Company. http://www.gcimagazine.com/business/management/regulation/143553126.html?pa

  107. New EU Cosmetics Regulations: A Quick Guide for Busy Formulators. http://chemistscorner.com/new-eu-cosmeticsregulations-a-quick-guide-for-busyformulators/

  108. Stafford N (2009) New nano rule for EU cosmetics. Royal society of Chemistry. http://www.rsc.org/chemistryworld/News/2009/November/27110901.asp

Download references

Acknowledgment

LR gratefully acknowledges the financial support provided by Young Scientist Grant (SB/FT/CS-034/2013) (GAP-0206), Department of Science and Technology (DST-SERB), New Delhi, India, and CSIR-CDRI, Lucknow, for providing facility and support.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ray, L., Gupta, K.C. (2018). Role of Nanotechnology in Skin Remedies. In: Ray, R., Haldar, C., Dwivedi, A., Agarwal, N., Singh, J. (eds) Photocarcinogenesis & Photoprotection. Springer, Singapore. https://doi.org/10.1007/978-981-10-5493-8_13

Download citation

Publish with us

Policies and ethics