Advertisement

Embodied Education in Mixed and Mediated Realties

Some Results and Principles for VR Content Design
  • Mina C. Johnson-GlenbergEmail author
Chapter
Part of the Smart Computing and Intelligence book series (SMCOMINT)

Abstract

This chapter provides a summary of some of this lab’s immersive media and embodied STEM learning research. It focuses on the integration of gesture in learning, and a new gesture-based assessment. A taxonomy for embodiment in education is included. The chapter concludes with several design principles that the Embodied Games Lab has culled over the years while creating educational content that maximizes the affordances of virtual and mixed reality technologies and meshes those with best pedagogical practices.

Keywords

Mixed reality Virtual reality Science education Embodied learning Taxonomy for embodiment 

Notes

Acknowledgements

The author wishes to thank David Birchfield, Colleen Megowan-Romanowicz, James Comstock, and Hue Henry. The majority of funding for the projects mentioned came from the NSF DRK-12 grant 1020367. Alien Health was funded by the ASU Obesity Solutions grant. All views in this chapter are those of the author.

References

  1. Abrahamson, D., & Lindgren, R. (2014). Embodiment and embodied design. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd edn., pp. 358–376). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  2. Antle, A. A., Corness, G., & Droumeva, M. (2009). What the body knows: Exploring the benefits of embodied metaphors in hybrid physical digital environments. Journal of Interactive Computing, 21(1–2), 66–75.CrossRefGoogle Scholar
  3. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660.Google Scholar
  4. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.Google Scholar
  5. Biocca, F. (1997). The Cyborg’s Dilemma: Progressive embodiment in virtual environments. Journal of Computer-Mediated Communication, 3. doi: 10.1111/j.1083-6101.1997.tb00070.x.
  6. Campos, J. J., Anderson, D. I., Barbu-Roth, M. A., Hubbard, E. M., Hertenstein, M. J., & Witherington, D. (2000). Travel broadens the mind. Infancy, 1(2), 149–219. doi: 10.1207/S15327078IN0102_1.
  7. Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2008). Gesturing makes learning last. Cognition, 106(2), 1047–1058.Google Scholar
  8. Coomans, M. K. D., & Timmermans, H. J. P. (1997). Towards a taxonomy of virtual reality user interfaces. In IEEE Computer Society 17th International Conference on Information Visualisation, IV, 279. doi:http://doi.ieeecomputersociety.org/10.1109/IV.1997.626531.
  9. Coulter, R., Saland, L., Caudell, T. P., Goldsmith, T. E., & Alverson, D. C. (2007). The effect of degree of immersion upon learning performance in virtual reality simulations for medical education. Medicine Meets Virtual Reality 15: In Vivo, in Vitro, in Silico: Designing the Next in Medicine, 125, 15.Google Scholar
  10. diSessa, A. (1988). Knowledge in pieces. In G. Forman & P. B. Pufall (Eds.), Constructivism in the computer age. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  11. Dunleavy, M., & Dede, C. (2014). Augmented reality teaching and learning. In M. D. M. J. M. Spector, J. Elen, & M. J. Bishop (Eds.), (Ed.), The Handbook of Research for Educational Communications and Technology. (4th edn., p. 31). New York: Springer.Google Scholar
  12. Engelkamp, J., & Zimmer, H. D. (1994). Motor similarity in subject-performed tasks. Psychological Research-Psychologische Forschung, 57(1), 47–53.CrossRefGoogle Scholar
  13. Gee, J. P. (2007). Good video games and good learning: Collected essays on video games, learning and literacy. New York: Peter Lang Publishing.CrossRefGoogle Scholar
  14. Glenberg, A. M. (2008). Embodiment for education. In P. Calvo, & A. Gomila (Eds.), Handbook of Cognitive Science: An Embodied Approach (pp. 355–372). Amsterdam: Elsevier.Google Scholar
  15. Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin & Review, 9(3), 558–565.CrossRefGoogle Scholar
  16. Goldin-Meadow, S. (2009). How gesture promotes learning throughout childhood. Child Development Perspectives, 3, 106–111.Google Scholar
  17. Goldin-Meadow, S. (2011). Learning through gesture. WIREs Cognitive Science, 2, 595–607. doi: 10.1002/wcs.132.
  18. Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301–307. doi: 10.1016/S0896-6273(03)00838-9.
  19. Hestenes, D. (1987). Toward a modeling theory of physics instruction. American Journal of Physics, 55(5), 440–454.CrossRefGoogle Scholar
  20. Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. Psychonomic Bulletin and Review, 15, 495–514.Google Scholar
  21. James, K. H., & Swain, S. N. (2011). Only self-generated actions create sensori-motor systems in the developing brain. Developmental Science, 14, 673–678. doi: 10.1111/j.1467-7687.2010.01011.x.
  22. Johnson-Glenberg, M. C., Birchfield, D., Koziupa, T., & Tolentino, L. (2014a). Collaborative embodied learning in mixed reality motion-capture environments: Two science studies. Journal of Educational Psychology, 106(1), 86–104. doi: 10.1037/a0034008.
  23. Johnson-Glenberg, M. C., Birchfield, D., Megowan-Romanowicz, M. C., & Snow, E. L. (2015). If the gear fits, spin it! Embodied education and in-game assessments. International Journal of Gaming and Computer-based Simulations, 7(4).Google Scholar
  24. Johnson-Glenberg, M. C., & Megowan-Romanowicz, C. (2017). Embodied science and mixed reality: How gesture and motion capture affect physics education. Cognitive Research: Practices and Implications, 2, 24. https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-017-0060-9.
  25. Johnson-Glenberg, M. C., Megowan-Romanowicz, M. C., Birchfield, D., & Savio-Ramos, C. (2016). Effects of embodied learning and digital platform on the retention of physics content: Centripetal force. Frontiers in Psychology, 7, 18–19. doi: 10.3389/fpsyg.2016.01819.
  26. Johnson-Glenberg, M. C., Savio-Ramos, C., & Henry, H. (2014b). “Alien Health”: A Nutrition Instruction Exergame Using the Kinect Sensor. Games for Health Journal: Research, Development, and Clinical Applications, 3(4), 241–251. doi: 10.1089/g4h.2013.0094.
  27. Johnson-Glenberg, M. C., Savio-Ramos, C., Perkins, K. K., Moore, E. B., Lindgren, R., Clark, D.,… Squire, K. (2014c). Science Sims and Games: Best Design Practices and Fave Flops. Paper presented at the The International Conference of the Learning Sciences (ICLS), Boulder, CO.Google Scholar
  28. Kang, S., & Tversky, B. (2016). From hands to minds: Gestures promote understanding. Cognitive Research: Principles and Implications., 1(4). doi: 10.1186/s41235-016-0004-9.
  29. Koch, S. C., Glawe, S., & Holt, D. V. (2011). Up and down, front and back: Movement and meaning in the vertical and sagittal axes. Social Psychology, 42(3), 214–224. doi: 10.1027/1864-9335/a000065.
  30. Kontra, C., Lyons, D., Fischer, S., & Beilock, S. L. (2015). Physical experience enhances science learning. Psychological Science, 26, 737–749. doi: 10.1177/0956797615569355.
  31. Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: University of Chicago Press.Google Scholar
  32. Lakoff, G., & Núñez, R. (2000). Where mathematics comes from. New York: Basic Books.Google Scholar
  33. Lindgren, R., & Johnson-Glenberg, M. C. (2013). Emboldened by Embodiment: Six Precepts regarding the Future of Embodied Learning and Mixed Reality Technologies. Educational Researcher, 42(8), 445–452. doi: 10.3102/0013189X13511661.
  34. Lindgren, R., & Johnson-Glenberg, M. C. (2014). Emboldened by embodiment: Six precepts regarding the future of embodied learning and mixed reality technologies. Educational Researcher, 42(8), 445–452. doi: 10.3102/0013189X13511661.
  35. Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulation. Computers & Education, 95, 174–187.Google Scholar
  36. Mayer, R. E. (2009). Multimedia learning (2nd edn.). New York: Cambridge University Press.CrossRefGoogle Scholar
  37. Miller, H. L., & Bugnariu, N. L. (2016). Cyberpsychology, Behavior and Social Networking, (4), 246–256. doi: 10.1089/cyber.2014.0682.
  38. Montessori, M. (1966). The secret of childhood. New York, N.Y.: Ballantine Books.Google Scholar
  39. Nathan, M. J., Walkington, C., Boncoddo, R., Pier, E. L., Williams, C. C., & Alibali, M. W. (2014). Actions speak louder with words: The roles of action and pedagogical language for grounding mathematical reasoning. Learning and Instruction, 33, 182–193. doi: 10.1016/j.learninstruc.2014.07.001.
  40. Niedenthal, P. M., Barsalou, L. W., Winkielman, P., Krauth-Gruber, S., & Ric, F. (2005). Embodiment in attitudes, social perception, and emotion. Personality & Social Psychology Review, 9, 184–211.Google Scholar
  41. Noice, H., & Noice, T. (2006). What studies of actors and acting can tell us about memory and cognitive functioning. Current Directions in Psychological Science, 15, 14–18.Google Scholar
  42. Parmar, D., Isaac, J., Babu, S. V., D’ Souza, N., Leonard, A. E., Gundersen, K., & Daily, S. B. (2016). Programming moves: Design and evaluation of embodied interaction in virtual environments to enhance computational thinking in middle school students. IEEE Virtual Reality (VR), 131–140.Google Scholar
  43. Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136–153.Google Scholar
  44. Segal, A. (2011). Do Gestural Interfaces Promote Thinking? Embodied Interaction: Congruent Gestures and Direct Touch Promote Performance in Math (Dissertation). (ISBN: 978-1-1246-2610-9). from ERIC.Google Scholar
  45. Shaffer, D. W., Hatfield, D. L., Svarovsky, G. N., Nash, P., Nulty, A., Bagley, E., Franke, K., Rupp, A. A., & Mislevy, R. (2009). Epistemic network analysis: A prototype for 21st century assessment of learning. International Journal of Learning and Media.Google Scholar
  46. Slater, M., Spanlang, B., & Corominas, D. (2010a). Simulating virtual environments within virtual environments as the basis for a psychophysics of presence. ACM Trans. Graph, 29(4), 1–9. doi: 10.1145/1778765.177882.
  47. Slater, M., Spanlang, B., Sanchez-Vives, M. V., & Blanke, O. (2010b). First person experience of body transfer in virtual reality. PLoS ONE, 5(5). doi: 10.1371/journal.pone.0010564.
  48. Slater, M., & Wilbur, S. (1997). A framework for immersive virtual environments (FIVE): speculations on the role of presence in virtual environments. PRESENCE: Teleoperators and Virtual Environments, 6, 603–616.CrossRefGoogle Scholar
  49. Squire, K., & Klopfer, E. (2007). Augmented reality simulations on handheld computers. Journal of the Learning Sciences, 16(3), 371–413.CrossRefGoogle Scholar
  50. Stickgold, R., & Walker, M. (2007). Sleep-dependent memory consolidation and reconsolidation. Sleep Medicine, 8(4), 331–343.CrossRefGoogle Scholar
  51. Sweller, J., van Merrienboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.CrossRefGoogle Scholar
  52. Tulving, E., & Thomson, D. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80(5), 352–373. doi: 10.1037/h0020071.
  53. Wilson, M. (2003). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636.CrossRefGoogle Scholar
  54. Wu, H., Lee, S. W., Chang, H., & Liang, J. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41–49.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of PsychologyArizona State UniversityTempeUSA

Personalised recommendations