Skip to main content

Control Strategies in the Design of Automotive Suspension Systems

  • Chapter
  • First Online:
Vehicle Suspension Systems and Electromagnetic Dampers

Abstract

In the literature available, many robust and optimal control approaches or algorithms were found in the design of automotive suspension systems. In this chapter, some of these will be reviewed such as the linear time-invariant H-infinity control (LTIH), the linear parameter-varying control (LPV) and model-predictive controls (MPC). Five widely known control approaches, namely, the linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG), sliding mode control (SMC), fuzzy and neuro-fuzzy control, skyhook and groundhook approaches, are reviewed more deeply. Since the damper plays an important role in the semi-active suspension system design, different types of damper technologies are discussed in the second section. This includes the Quanser electromagnetic damper that was used in the experimental analysis in this manuscript. Another major objective of this manuscript is to tilt the standard passenger vehicle inward during cornering. So a brief literature review on automotive tilting technology is included in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen Y (2009) Skyhook surface sliding mode control on semi-active vehicle suspension systems for ride comfort enhancement. Engineering 1:23–32

    Article  Google Scholar 

  2. Ahmadian M, Vahdati N (2006) Transient dynamics of semiactive suspensions with hybrid control. J Intell Mater Syst Struct 17:145–153

    Article  Google Scholar 

  3. Choi S, Lee S, Park Y (2001) A hysteresis model for the field-dependent damping force of a magnetorheological damper. J Sound Vib 245:375

    Article  Google Scholar 

  4. Fang X, Chen W (1999) Fuzzy control technology and the application to vehicle semi-active suspension. Chin J Mech Eng 35:98–100

    Google Scholar 

  5. Karnopp D, Crosby M, Harwood R (1974) Vibration control using semi-active force generators. J Eng Ind 96:619–626

    Article  Google Scholar 

  6. Besinger F, Cebon D, Cole D (1995) Force control of a semi-active damper. Veh Syst Dyn 24:695–723

    Article  Google Scholar 

  7. Marino R, Scalzi S, Cinili F (2007) Nonlinear PI front and rear steering control in four wheel steering vehicles. Veh Syst Dyn 45:1149–1168

    Article  Google Scholar 

  8. Du F, Li J, Li L, Si D (2010) Robust control study for four-wheel active steering vehicle. In: International conference on electrical and control engineering (ICECE), pp 1830–1833

    Google Scholar 

  9. Goodall R (1999) Tilting trains and beyond-the future for active railway suspensions. 1. Improving passenger comfort. Comput Control Eng J 10:153–160

    Article  Google Scholar 

  10. Goodall R (1999) Tilting trains and beyond. The future for active railway suspensions. 2. Improving stability and guidance. Comput Control Eng J 10:221–230

    Article  Google Scholar 

  11. web13 (2012, Aug) http://www.dailymail.co.uk/sciencetech/article-1263509/Meet-electric-powered-Land-Glider-half-width-normal-car.html

  12. web11 (2012, Aug) http://www.carver-engineering.com/

  13. Karnopp D, Hibbard R (1992) Optimum roll angle behavior for tilting ground vehicles. ASME Dyn Syst Control Div Publ DSC, ASME, New York, NY (USA) 44:29–37

    Google Scholar 

  14. Hibbard R, Karnopp D (1996) Twenty first century transportation system solutions—a new type of small, relatively tall and narrow active tilting commuter vehicle. Veh Syst Dyn 25:321–347

    Article  Google Scholar 

  15. So SG, Karnopp D (1993) Methods of controlling the lean angle of tilting vehicles. DSC 52:311–319

    Google Scholar 

  16. Saccon A, Hauser J, Beghi A (2008) A virtual rider for motorcycles: an approach based on optimal control and maneuver regulation, pp 243–248

    Google Scholar 

  17. Frezza R, Beghi A (2003) Simulating a motorcycle driver. In: New trends in nonlinear dynamics and control and their applications, pp 175–186

    Google Scholar 

  18. Kidane S, Alexander L, Rajamani R, Starr P, Donath M (2006) Road bank angle considerations in modeling and tilt stability controller design for narrow commuter vehicles. In: Proceedings of the American control conference, Minneapolis, Minnesota, USA, p 6

    Google Scholar 

  19. Piyabongkarn D, Keviczky T, Rajamani R (2004) Active direct tilt control for stability enhancement of a narrow commuter vehicle. Int J Automot Technol 5:77–88

    Google Scholar 

  20. Jones W (2005) Easy ride: Bose Corp. uses speaker technology to give cars adaptive suspension. IEEE Spectr 42:12–14

    Article  Google Scholar 

  21. web28 (2012, Aug) http://www.motortrend.com/auto_shows/tokyo/2009/

  22. Gohl JB (2003) Narrow tilting vehicles: modeling and steering based, tilt control. University of Minnesota, Minnesota

    Google Scholar 

  23. Amati N, Festini A, Pelizza L, Tonoli A (2012) Dynamic modelling and experimental validation of three wheeled tilting vehicles. Veh Syst Dyn 49:889–914

    Article  Google Scholar 

  24. Edelmann J, Plöchl M, Lugner P (2011) Modelling and analysis of the dynamics of a tilting three-wheeled vehicle. Multibody Syst Dyn 1–19

    Google Scholar 

  25. Nguyen QH, Choi SB (2009) Optimal design of MR shock absorber and application to vehicle suspension. Smart Mater Struct 18:035012

    Article  Google Scholar 

  26. Karnopp D, Crosby MJ, Harwood RA (1973) Vibration control using semi-active force generators. In: ASME Pap

    Google Scholar 

  27. Hrovat D (1997) Survey of advanced suspension developments and related optimal control applications. Automatica 33:1781–1817

    Article  MathSciNet  MATH  Google Scholar 

  28. Poussot-Vassal C, Sename O, Dugard L, Gaspar P, Szabo Z, Bokor J (2008) A new semi-active suspension control strategy through LPV technique. Control Eng Pract 16:1519–1534

    Article  Google Scholar 

  29. Rossi C, Lucente G (2004) H∞ control of automotive semi-active suspensions. In: Proceedings of the 1st IFAC symposium on advances in automotive control Salerno, Italy

    Google Scholar 

  30. Zin A, Sename O, Dugard L (2005) Switched H∞ control strategy of automotive active suspensions. In: Proceedings of the 16th IFAC world congress (WC), Praha, Czech Republic

    Google Scholar 

  31. Giorgetti N, Bemporad A, Tseng HE, Hrovat D (2006) Hybrid model predictive control application towards optimal semi-active suspension. Int J Control 79:521–533

    Article  MathSciNet  MATH  Google Scholar 

  32. Poussot-Vassal C, Drivet A, Sename O, Dugard L, Ramirez-Mendoza R (2007) A self tuning LPV/H∞ suspension controller for a multi-body quarter vehicle model. In: Proceedings of the 10th mini-conference on vehicle system dynamics, identification and anomalies (VSDIA), Budapest, Hungary

    Google Scholar 

  33. Gaspar P, Szaszi I, Bokor J (2004) Active suspension design using LPV control. In: Proceedings of the 1st IFAC symposium on advances in automotive control (AAC), Salerno, Italy, pp 584–589

    Google Scholar 

  34. Zin A, Sename O, Gaspar P, Dugard L, Bokor J (2008) Robust LPV–H∞ control for active suspensions with performance adaptation in view of global chassis control. Veh Syst Dyn 46:889–912

    Article  Google Scholar 

  35. Canale M, Milanese M, Novara C (2006) Semi-active suspension control using ‘fast’ model-predictive techniques. IEEE Trans Control Syst Technol 14:1034–1046

    Article  Google Scholar 

  36. Giua A, Melas M, Seatzu C, Usai G (2004) Design of a predictive semiactive suspension system. Veh Syst Dyn 41:277–300

    Article  Google Scholar 

  37. Choudhury SF, Sarkar DMAR (2012) An approach on performance comparison between automotive passive suspension and active suspension system (pid controller) using matlab/simulink. J Theor Appl Inf Technol 43:295–300

    Google Scholar 

  38. ElMadany MM, Abduljabbar ZS (1999) Linear quadratic Gaussian control of a quarter-car suspension. Veh Syst Dyn 32:479–497

    Article  Google Scholar 

  39. Krtolica R, Hrovat D (1992) Optimal active suspension control based on a half-car model: an analytical solution. IEEE Trans Autom Control 37:528–532

    Article  MathSciNet  Google Scholar 

  40. Hrovat D (1991) Optimal active suspensions for 3D vehicle models. In: Proceedings of American control conference, pp 1534–1541

    Google Scholar 

  41. Doyle J, Stein G (1981) Multivariable feedback design: concepts for a classical/modern synthesis. IEEE Trans Autom Control 26:4–16

    Article  MATH  Google Scholar 

  42. Fuller CR, Elliott SJ, Nelson PA (1997) Active control of vibration. Academic Press, London

    Book  Google Scholar 

  43. Hrovat D (1993) Applications of optimal control to advanced automotive suspension design. J Dyn Syst Meas Control 115:328

    Article  Google Scholar 

  44. Shisheie R, Shafieenejad I, Moallemi N, Novinzadeh A (2012) Linear quadratic regulator time-delay controller for hydraulic actuator. J Basic Appl Sci Res 2(3):2607–2618

    Google Scholar 

  45. Prokop G, Sharp R (1995) Performance enhancement of limited-bandwidth active automotive suspensions by road preview. IEEE Proc Control Theory Appl 140–148

    Google Scholar 

  46. Shen Y (2005) Vehicle suspension vibration control with magnetorheological dampers. Ph.D. Thesis, University of Waterloo

    Google Scholar 

  47. Foo G, Rahman M (2010) Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection. IEEE Trans Ind Electron 57:1270–1278

    Article  Google Scholar 

  48. Shi P, Xia Y, Liu G, Rees D (2006) On designing of sliding-mode control for stochastic jump systems. IEEE Trans Autom Control 51:97–103

    Article  MathSciNet  MATH  Google Scholar 

  49. Shiri A (2012) Robust sliding mode control of electromagnetic suspension system with parameter uncertainty. J Appl Sci Eng Technol 10:1677–1683

    Google Scholar 

  50. Orowska-Kowalska T, Kaminski M, Szabat K (2010) Implementation of a sliding-mode controller with an integral function and fuzzy gain value for the electrical drive with an elastic joint. IEEE Trans Ind Electron 57:1309–1317

    Article  Google Scholar 

  51. Huang L, Mao X (2010) SMC design for robust H [infinity] control of uncertain stochastic delay systems. Automatica 46:405–412

    Article  MATH  Google Scholar 

  52. Wu L, Ho DWC (2010) Sliding mode control of singular stochastic hybrid systems. Automatica 46:779–783

    Article  MathSciNet  MATH  Google Scholar 

  53. Choi HH (2007) LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems. IEEE Trans Autom Control 52:736–742

    Article  MathSciNet  MATH  Google Scholar 

  54. Tsai YW, Mai KH, Shyu KK (2006) Sliding mode control for unmatched uncertain systems with totally invariant property and exponential stability. J Chin Inst Eng 29:179–183

    Article  Google Scholar 

  55. Chan ML, Tao C, Lee TT (2000) Sliding mode controller for linear systems with mismatched time-varying uncertainties. J Franklin Inst 337:105–115

    Article  MathSciNet  MATH  Google Scholar 

  56. Yagiz N, Yuksek I, Sivrioglu S (2000) Robust control of active suspensions for a full vehicle model using sliding mode control. JSME Int J Ser C Mech Syst Mach Elem Manuf 43:253–258

    Article  Google Scholar 

  57. Chamseddine A, Noura H, Raharijaona T (2006) Control of linear full vehicle active suspension system using sliding mode techniques, pp 1306–1311

    Google Scholar 

  58. Al-Holou N, Joo DS, Shaout A (1994) The development of fuzzy logic based controller for semi-active suspension system. In: Proceedings of the 37th Midwest symposium on IEEE, vol 2, pp 1373–1376

    Google Scholar 

  59. Barr AJ, Ray J (1996) Control of an active suspension using fuzzy logic. In: Proceedings of the Fifth IEEE International conference on fuzzy systems, vol 1, pp 42–48

    Google Scholar 

  60. Yan B, Zhang X, Niu H (2012) Design and test of a novel isolator with negative resistance electromagnetic shunt damping. Smart Mater Struct 21:035003

    Article  Google Scholar 

  61. Youssef KH, Yousef HA, Sebakhy OA, Wahba MA (2009) Adaptive fuzzy APSO based inverse tracking-controller with an application to DC motors. Expert Syst Appl 36:3454–3458

    Article  Google Scholar 

  62. Khalid H, Rizvi S, Cheded L, Doraiswami R, Khoukhi A (2010) A PSO-trained adaptive neuro-fuzzy inference system for fault classification. In: International conference on neural computation, ICNC Valencia, Spain

    Google Scholar 

  63. Kashani R, Strelow JE (1999) Fuzzy logic active and semi-active control of off-road vehicle suspensions. Veh Syst Dyn 32:409–420

    Article  Google Scholar 

  64. Shen Y, Golnaraghi M, Heppler G (2006) Semi-active vibration control schemes for suspension systems using magnetorheological dampers. J Vib Control 12:3–24

    Article  MATH  Google Scholar 

  65. Karnopp D (1983) Active damping in road vehicle suspension systems. Veh Syst Dyn 12:291–311

    Article  Google Scholar 

  66. Li H, Goodall RM (1999) Linear and non-linear skyhook damping control laws for active railway suspensions. Control Eng Pract 7:843–850

    Article  Google Scholar 

  67. Margolis DL (1983) Semi-active control of wheel hop in ground vehicles. Veh Syst Dyn 12:317–330

    Article  Google Scholar 

  68. Savaresi SM, Silani E, Bittanti S (2005) Acceleration-driven-damper (ADD): an optimal control algorithm for comfort-oriented semiactive suspensions. J Dyn Syst Meas Control 127:218

    Article  Google Scholar 

  69. Savaresi SM, Spelta C (2007) Mixed sky-hook and ADD: approaching the filtering limits of a semi-active suspension. J Dyn Syst Meas Control 129:382

    Article  Google Scholar 

  70. Bakar SAA, Jamaluddin H, Rahman RA, Samin PM, Hudha K (2008) Vehicle ride performance with semi-active suspension system using modified skyhook algorithm and current generator model. Int J Veh Auton Syst 6:197–221

    Article  Google Scholar 

  71. Miller LR, Nobles CM (1990) Methods for eliminating jerk and noise in semi-active suspensions, presented at the SAE 1990 transactions

    Google Scholar 

  72. Tong RT (2001) Ride control: a two-state design for heavy vehicle suspension. University of Illinois at Chicago

    Google Scholar 

  73. Soliman AMA, Kaldas MMS, Barton DC, Brooks PC (2012) Fuzzy-skyhook control for active suspension systems applied to a full vehicle model. Int J Eng Technol 2:01–12

    Google Scholar 

  74. Islam ASMS, Ahmed A (2005) Comparative performance study of magneto-rheological fluid based damper for vehicle suspension. In: Proceedings of the International conference on mechanical engineering 2005, Dhaka, Bangladesh

    Google Scholar 

  75. Kashem SBA, Ektesabi M, Nagarajah R (2012) Comparison between different sets of suspension parameters and introduction of new modified skyhook control strategy incorporating varying road condition. Veh Syst Dyn 50:1173–1190

    Article  Google Scholar 

  76. Valasek M, Kortum W, Sika Z, Magdolen L (1998) Development of semi-active road-friendly truck suspensions. Control Eng Pract 6:735–744

    Article  Google Scholar 

  77. Yi K, Wargelin M, Hedrick JK, University of California Transportation Center, B. D. o. M. E (1992) Dynamic tire force control by semi-active suspensions. University of California Transportation Center, University of California

    Google Scholar 

  78. Valášek M, Novak M, Åika Z, Vaculin O (1997) Extended ground-hook-new concept of semi-active control of truck’s suspension. Veh Syst Dyn 27:289–303

    Article  Google Scholar 

  79. web7 (2012, Aug) http://www.conceptcarz.com/vehicle/z11633/Carver-One.aspx

  80. web16 (2012, Aug) http://lynk.ly/stories/view/1479328. Available http://delphi.com/manufacturers/auto/other/ride/magneride/

  81. web17 (2012, Aug) http://www.i4u.com/9754/carver-one-first-tilting-three-wheeler-market. Available http://delphi.com/manufacturers/auto/other/ride/magneride/

  82. Rajamani R (2006) Vehicle dynamics and control. Springer, New York

    MATH  Google Scholar 

  83. web14 (2012, Aug) http://www.bmwblog.com/2009/10/09/bmw-unveils-clever-concept/

  84. web12 (2012, Aug) http://www.MP3.piaggio.com/. Available http://delphi.com/manufacturers/auto/other/ride/magneride/

  85. Snell A (1998) An active roll-moment control strategy for narrow tilting commuter vehicles. Veh Syst Dyn 29:277–307

    Article  Google Scholar 

  86. Poelgeest A, Edge K, Darling J (2007) Development of a steer tilt controller for a three wheeled tilting vehicle. In: Proceedings of the ASME International mechanical engineering congress and exposition, IMECE, Seattle, USA

    Google Scholar 

  87. Kidane S, Alexander L, Rajamani R, Starr P, Donath M (2008) A fundamental investigation of tilt control systems for narrow commuter vehicles. Veh Syst Dyn 46:295–322

    Article  Google Scholar 

  88. Chiou J, Lin CY, Chen CL, Chien CP (2009) Tilting motion control in narrow tilting vehicle using double-loop PID controller. In: Proceedings of the 7th Asian control conference, 978-89-956056-1/09, pp 913–918

    Google Scholar 

  89. Defoort M, Murakami T (2009) Sliding-mode control scheme for an intelligent bicycle. IEEE Trans Ind Electron 56:3357–3368

    Article  Google Scholar 

  90. Nenner U, Linker R, Gutman PO (2008) Robust stabilization of an unmanned motorcycle. In: Robotics, automation and mechatronics, IEEE conference on, Chengdu, China, pp 101–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kashem, S., Nagarajah, R., Ektesabi, M. (2018). Control Strategies in the Design of Automotive Suspension Systems. In: Vehicle Suspension Systems and Electromagnetic Dampers. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5478-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5478-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5477-8

  • Online ISBN: 978-981-10-5478-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics